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Abstract 

Hematopoietic stem cells (HSCs) are perceived to reside at the top of a hierarchy in which HSCs possess self-renewal 

capacity and can progressively give rise to all blood lineage cells. Many findings consider calcium signalling as an 

extrinsic factor and a handful of studies show the direct role of calcium sensor in HSC regulation. We discuss how 

intracellular calcium (Cai
2+) pathway regulates and maintains HSC, from the aspect of relevant calcium sensor proteins. 

In the future, with a combination of advances in single cell technologies, low-input proteomic platform and spatial-

imaging will be hopeful approaches towards identifying the mechanism of Cai
2+ in HSC maintenance. 
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Introduction 

Hematopoiesis is the process of blood formation that 
is occurred in the adult bone marrow (BM) cells. Blood is 
one of the most regenerative tissues and is capable to 
produce approximately one trillion new cells daily [1]. 
The persistence production on high demands of new 

blood cells is crucially dependent on a rare population of 
cells, namely the hematopoietic stem cells (HSCs) consists 
of a heterogeneity group of primitive cells [2]. HSCs are 
renowned to balance their self-renewal capacity with 
their differentiation into committed blood cells in various 
blood lineages in a tightly regulated environment [3]. 

 
HSCs differentiation is regulated through their 

extrinsic factors, and the orchestrated activities of various 
intrinsic factors. To date, there are several revised models 
for hematopoietic stem cell differentiation [4]. Major 
intrinsic determinant of cell fate choices comprises of 
transcription factors, cell cycle regulators, anti-apoptotic 
signals and epigenetic factors. Briefly, transcription 
factors of the homeobox domain (HOX) family genes are 
important for HSC regulation [5]. 
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Functional loss of the Hox co-factor MEIS1 increased 
HSC cycling and subsequent HSC exhaustion [6]. The 
deficiency of HoxB4 and HoxA9 leads to a reduction of 
HSC function [7]. Epigenetics modification controls the 
accessibility of target gene regulatory elements on core 
histones. The mixed lineage leukemia (Mll1) interacts 
with H3K4me3 histone modification and MLL1 loss has 
been linked to abnormal proliferation of hematopoietic 
stem and progenitors (HSPCs) and hematopoietic failure 
[8]. Besides, HSCs are suggested to reside in niches in the 
adult BM. For instance, stem cell factor (SCF) binds to KIT 
receptors, and deletion of SCF in endothelial and 
perivascular cells leads to a decrease in HSC numbers [9]. 

 
However, there is very little information available 

about the signal transduction events that regulate HSC 
function; in particular, the effects of intracellular calcium 
(Cai

2+) signaling are not well described. This review 
focuses on the participation of intracellular calcium and 
calcium binding protein in HSCs regulatory mechanisms. 

 
Recent studies have added an important aspect of this 

process, introducing the role of Cai
2+ in cell fate decisions 

during hematopoiesis. The balance between quiescence 
and divisions in HSCs is essential for hematopoietic 
maintenance. A study showed that the mechanism of how 
HSCs switch from quiescence to cycling during stress is 
governed through Cai

2+–mitochondria dependent 
pathway in the regulation of HSC division. The authors 
demonstrated that by suppressing the Cai

2+ level using 
exogenous adenosine or Nifedipine, a Ca2+ channel 
blocker could prolong cell division interval in HSCs [10]. 
Besides, another current finding emphasized that how in 
vitro culture condition with low calcium could inhibit 
calpain proteases and differentiation, thereby improving 
on HSC maintenance in vitro [11]. These two studies 
however invite some debates regarding the exact role of 
Cai

2+ in regulating the HSC. 
 
Calmodulin (CaM) is an Cai

2+ sensor and it binds to 
free cytosolic Ca2+, which leads to conformational changes 
that facilitate its interaction with the multifunctional 
Ca2+/CaM-dependent protein [12]. Calmodulin-dependent 
protein kinase IV (CaMKIV), a downstream kinase of 
calmodulin is required for Lin-Sca-1+Kit+ (LSK) cells to 
repopulate the bone marrow in transplantation assays 
and the role of CaMKIV in HSC self-renewal is mediated 
via regulation of CBP and Bcl-2. The caveat of this finding 
is the authors defined the HSC by LSK surface markers, in 
which this population includes many early progenitors 
and primitive lymphoid cells. 

 

Another more recent finding demonstrated that 
calmodulin-dependent protein kinase kinase II (CaMKKII) 
regulates the regeneration of hematopoietic stem and 
progenitor cells (HSPC). They suggested CaMKK2 links 
proximal radiation signaling to activation of the anti-
proliferative AMPK/p53 signaling pathways [13]. The 
authors have applied two sets of surface markers to 
define HSC population, LSK in the microarray while LSK 
CD34- in the transplantation setting, where raises 
thequestions of the quiescence status from the microarray 
may not reflect the highly proliferative phenotype that 
they have observed after the radiation. 

 
Altogether, the findings that have been discussed 

above indicate that Cai
2+ levels are crucial in HSC 

regulation that definitely requires more thorough 
investigation especially at the protein level, within the 
scope on other unknown Cai

2+ sensors in determining HSC 
cell fate options. Quiescent HSCs is also featured for their 
low baseline energy production and low mitochondria 
membrane potentials and rely on glycolysis [14,15]. 
Recently, the effect on how metabolism regulates HSC 
function has received a great amount of attention, a role 
previously overlooked due to HSCs being thought of as 
mostly glycolytic. In addition, HSC maintenance has been 
linked to fatty acid oxidation through the 
promyelocyticleukemia (PML)-peroxisome proliferator-
activated receptor  (PPAR-) pathway as an alternative 
source of energy [16]. Advanced technologies have 
broadened our knowledge on hematopoiesis. 
 

 
 

 

Figure 1: Schematic illustrates the Essential Role of 
Calcium Sensing Protein in HSC Regulation. Round 
pinkish: nucleus; rectangular: mitochondria; 
Elongated filament: actin filament. 
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Hematopoietic stem cell fate option is regulated in a 
complex networks, from transcriptional to post-
transcriptional, and even at the protein level. In 
consideration of all the studies discussed above, the 
model shown in Figure 1 represents the missing nodes. 
However, we believe that with the advances in single cell 
technology and proteomic platform that accepts low input 
of cells, more missing nodes of stem and progenitor cells 
mechanism will be discovered. Moreover, the epigenetic 
status of single HSPCs analyzed by single cell Hi-C [17] 
and single cell ATAC-seq [18] provides information of the 
cell variability and the continuous regulatory landscape of 
HSC. By combining imaging with in situ RNA-seq [19,20], 
studying the spatial localization of individual HSCs in 
combination with different transcriptomes becomes 
possible. 
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