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Abstract

Extracellular vehicles (EVs), the secret messengers of a cell, are cell-derived signaling vesicles present in most human fluids. 
They have been recently discovered and are known as signaling particles or a type of dialogue between cells known as 
microvesicles, exosomes, and apoptotic bodies. The EVs can carry different types of cargo that can be delivered to recipient 
cells and lead to changes in the phenotype of a cell which might be useful or harmful. Here, we discuss what these busybody 
cells are, how they are formed, and what they can do in drug resistance or how they have been used as a therapeutic tool in 
several hematological malignancies. These miniature molecules are a fascinating new field of research. They can be made 
artificially as therapeutic agents in the era of personalized medicine for overcoming the relapse of hematological malignancies.    
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Introduction

Hematological malignancies are heterogeneous diseases 
involving blood and bone marrow and could also be organ-
associated diseases that consistently show drug resistance 

and recurrence. These malignancies are responsible for 1.2 
million new disease cases annually worldwide [1]. Today, 
hematological malignancies are treated with a range of 
medications as well as drug combinations according to 
the guidelines of the World Health Organization (WHO), 
including chemotherapy, immunotherapy, targeted therapy, 
and cell cycle inhibitors. Despite all the strategies and 
therapeutic advances in hematological malignancies in 
recent decades, cancer drug resistance is a major and 
significant obstacle in treatment management. Research 
on these major therapeutic obstacles has yielded extensive 
results. Some of the factors and mechanisms involved in 
therapeutic resistance include microRNAs, extracellular 
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vesicles (EVs), and miRNA-package vesicles [2]. In this 
review, EVs, their biogenesis, and their importance in drug 
resistance in a set of hematological malignancies, such as 
multiple myeloma, chronic myelogenous leukemia (CML), 
and acute myelogenous leukemia (AML), and chronic 
lymphocytic leukemia (CLL), are reviewed. In hematological 
malignancies, the EVs of blood-derived tumors regulate 
the microenvironment, affect the immune cells, transmit 
tolerance signals, stop cell differentiation, and induce 
apoptosis in CD8 cytotoxic T-cells induce regulatory T-cells, 
promote disease development, and cause drug resistance. 
Awareness of these EVs leads to new hope for developing 
targeted therapy for hematological malignancies.

Extracellular Vesicles

The EVs are locked structures decorated with 
phospholipid bilayer membranes consisting of four sets of 
microvesicles, exosomes, apoptotic bodies, and oncosomes 
[3,4]. The movements of EVs between cells act as cell-to-cell 
communication and convey a wide range of biomolecules 
embracing mRNAs, miRNAs, proteins, chaperones, lipids, 
and markers that indicate the birthplace cells. The changes 
induced by them can cause physiological or pathological 
conditions. Microvesicles are small membrane-bound 
vesicles usually measuring 100-1000 nm and being shed from 
a cell surface. On the other hand, exosome vesicles are more 
homogeneous and are smaller than microvesicles, with a size 
of 30-120 nm and originating from multivesicular bodies 
(MVBs). Recent research has shown that these EVs may 
cause epigenetic changes in the target cell by transferring 
products, such as the source cell receptor to the target cell, 
oncogenic products, transcription factors, or pathogens, as 
well as mRNA and miRNA to the target cell and change its 
function [5,6].

Biogenesis

Although the basis for the formation of these submicron 
vesicles has been proven to some extent, there is a long 
way to understand this process entirely. In this section, the 
formation mechanisms of microvesicles and exosomes are 
briefly described. Microvesicles are directly formed by the 
budding of the plasma membrane [7], with changes in the 
cytoskeletal proteins and phospholipids symmetry playing an 
essential role. Phospholipid asymmetry of membrane layers 
is maintained by translocase activity. Some factors, such as 
complement-mediated lysis, stress, and oxidative injury, can 
increase intracellular calcium that activates calpain, gelsolin, 
and scramblase whilst inactivating the translocase enzyme. 
Gelsolin and calpain activate scramblase and cause some 
cuts in actin filaments, promoting membrane asymmetry 
and phosphatidylserine externalization. On the other 
hand, ADP-ribosylation factor 6 (ARF6) triggers a cascade 

signal that activates phospholipase D (PLD). The activated 
phospholipase invokes an ERK kinase enzyme into the 
plasma membrane, which is activated by phosphorylating 
the light chain myosin. The combination of these pathways 
causes the release and formation of microvesicles. Exosomes 
are formed along the path of the endosomal network. Early 
endosomes combine with endocytic vesicles and mix their 
content for degradation, exocytosis, and recycling [8]. Finally, 
late endosomes or MVBs spread from early endosomes. 
Their fusion with the plasma membrane leads to the release 
of exosomes. Exosomes may be released from apoptotic 
bodies. The reorganization of CD9 and CD63 into tetraspanin 
and ESCRTs machinery that includes proteins, TSG101, Alix, 
and CHMP4 also acted as a golden step for exosome release. 
Exosome release is affected by other factors, such as Rab27a, 
Rab27b, and environment PH gradients. New research has 
shown that SphK2/S1p signaling effectively regulates the 
content of exosomes [8-10].
    

Methods and Measuring

The EVs have cargo that can be secured and unharmed 
from the bloodstream. On the other hand, quick and safe 
access to EVs allows for analyzing their content and brings 
a fingerprint for precision medicine. Therefore, all these 
characteristics made EVs a powerful diagnostic tool [11]. In 
the first step, EVs should be enriched purely to determine 
their cargo. Some methods isolated EVs commonly and 
some others specifically. Polymer-based precipitants, 
such as polyethylene glycol, reduce the solubility of EVs 
and lead to precipitation, followed by isolation using spin 
centrifugation [12]. Ultracentrifugation, the current gold 
standard of isolation, has limitations [13]. Tangential flow 
filtration and immunoaffinity-based method prevent some 
of the drawbacks of the previously mentioned technique 
[14,15]. Currently, the isolation of EVs based on microfluidic 
technology is developing to achieve high-purity enrichment 
[16]. Secondly, EVs should be identified in terms of size, 
concentration, and morphology. Nanoparticle tracking is 
based on light scattering and the Brownian motion of EVs in 
solution [17]. High-resolution flow cytometry uses a lipophilic 
dye to intensify the signals [18,19]. For morphological 
analysis, cryogenic transmission electron microscopy can be 
used [20]. As the best method for detection, a resistive pulse 
sensor changes the measurement flow across the nano pore, 
when an EV passes through the pores and creates the size 
of the information [21]. Finally, EVs cargo can be assessed 
by western blot, enzyme-linked immunosorbent assay, RT-
qPCR, and next-generation sequencing [11].

Interaction and Uptake Mechanism

Several mechanisms have been proposed for the 
interaction of EVs, but it is not clear exactly which mechanism 
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and when it acts. Exosomes and recipient cells can interact 
through transmembrane proteins. One of the critical proteins 
in this interaction is the family of lectins. Siglecs, as members 
of the lectin family, react with exosomes from B-cells 
and macrophages that have the CD169 marker. Heparan 
sulfate proteoglycans (HSPGs) are another example that 
facilitates the internalization process by interacting with the 
fibronectin of exosomes. Some adhesion molecules that help 
uptake entail CD9 and CD81 or tetraspanins on exosomes. 
Other ways of interaction include the fusion of vesicles with 
plasma membranes and the release of their contents. In 

addition to plasma fusion, micropinocytosis, phagocytosis, 
as well as clathrin-mediated, caveolin-dependent, lipid-raft-
dependent, and clathrin/caveolin-independent pathways as 
diverse types of endocytosis may be involved. Another way 
of interaction is the fusion of exosomes with the endocytic 
vesicles of the target cell. According to a theory, target cells 
can control the messages transmitted from exosomes by 
releasing other exosomes from themselves. Polymerization 
of the actin from cytoskeletal proteins is involved in the 
process of internalization (Figure 1) [22-24]. 

Figure 1: Extracellular vesicles and blood tumors progression. Extracellular vesicles are released from blood tumors by 
regulating bone marrow niche and manipulating immune cells; sending a tolerance signal to Tells, inducing regulatory T cells 
or apoptosis in TCD8 cells, thrombogenicity, and angiogenesis causes the development of hematological malignancies.

EVs and Drug Resistance

As a result of crosstalk between AML cells and 
microenvironment stroma cells, the production of IL-8 was 
induced by exosomes released from AML cells, causing drug 
resistance to etoposide. Moreover, exosomes from the bone 
marrow microenvironment might provide slight resistance to 
treatment [25]. The fibroblast growth factor (FGF) 2-FGFR1 
signaling regulates the release of leukemia-protective 
exosomes from bone marrow stromal cells (BMSCs). On 
the other hand, the exosomes packed with FGF2 can induce 
resistance to tyrosine kinase inhibitors (TKIs) [26,27]. 
Exosomes-holding apoptosis-related proteins encompass 
BCL-2, MCL-1, BCL-2-like, BAX, and BCL-X presenting in AML 
blasts relevant to relapse [28]. The VEGF/VEGFR packaging 
into exosomes may be pertinent to the treatment failure 
by inducing glycolysis in HUVECs and causing vascular 
remodeling (Figure 2) [29]. 

The PSMA3 and PSMA3-AS1-exosomes from BMSCs 
cause progressive resistance to proteasome inhibitors in 
multiple myeloma patients [30]. Bortezomib resistance 
occurs in multiple myeloma with del 17p, t(4;14) due 
to more circulating exosomes with circMYC than non-
resistant patients [31]. Low levels of exosomal-microRNAs, 
including miR-16-5p, miR-15a-5p, miR-20a-5p, and miR-
17-5p are observed in bortezomib-resistant myeloma [32]. 
Delivering miR-365 with exosomes regulates the expression 
of apoptosis-related protein negatively in CML cells, leading 
to imatinib resistance [33]. In CLL, BCR signaling induced by 
IgM can increase exosomes with miRs content (miR-29, miR-
150, miR-155, and miR-233), which reduces the response 
to treatment. The effect of these miRs can be diminished by 
lowering the concentration of exosomes through ibrutinib 
therapy [34]. 
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Figure 2: Extracellular vesicles and malignancy drug resistance. The role of extracellular vesicles as a factor in the development 
of therapeutic resistance in hematological malignancies; AML, CLL, CML, and MM are briefly presented. AML: due to the 
association between AML malignant cells and the bone marrow microenvironment, the released exosomes are packed with 
IL-8 and FGF-2 and caused resistance to etoposide and TKI, respectively. CLL: the activated BCR signal releases exosomes with 
miRNAs contents, such as miR-29, -150, -15, and -233 that reduce therapeutic response. MM: in myeloma patients, exosomes 
with various cargo cause failure to bortezomib and PI. For instance, low miRNA levels, such as miR-16-5p, 15a-5p, 20a-5p, 17-
5p, and c-myc [in patients with t (4; 14) and Del 17p] as a therapeutic agent against bortezomib and the others with PSMA3 
against to PI. CML: miR-365 from exosomes released from malignant cells in CML causes resistance to imatinib by negatively 
affecting the expression of apoptotic proteins.

EVs as Therapeutic Target

The EVs can have robust therapeutic value as the result 
of connections between EVs and tumors. Several protocols 
can be used to put EVs as a therapeutic target. For instance, 
inhibiting the biogenesis of EVs (inhibitors for key enzymes 
or proteins involved in the formation of EVs, such as Alix), 
interfering with the secretion of EVs (dimethylamiloride 
as an inhibitor of Na2+/Ca2+ exchange), creating a barrier 
against their uptake (blocking surface adhesion molecules 
or another internalization receptor), and disrupting the way 
EVs affect recipient cells [35]. Assembling of EVs packed with 
miR-15a and -16 can advance the potency of Immunotherapy 
against Multiple myeloma. Their ability to block the 
connection between myeloma cells and the bone marrow 
microenvironment prevents Multiple myeloma survival. 
The miR-15a and -16 expressions can also be affected by 
targeting EV-LNC00461 in the circulation or tumor site. EV-
miR-146a is another inhibitor of the connection between 
myeloma cells and stromal cells. EV-TGFB1 is a target point 

in AML patients by restarting the function of natural killer 
cells [36]. Cancerous cells in CML have a receptor for IL-13. 
Formulation of IL-13-expressing EVs containing BCR-ABL-
suppressor RNAs can diminish the proliferation of CML cells. 
The use of exosomes embarrassing miR-328 can decrease 
the therapeutic resistance of these patients to imatinib 
[37]. Targeting myc-containing EVs, due to their role in the 
association of CLL cells with bone marrow niches, can inhibit 
the growth of these cells and result in resistance to treatment 
[36]. The HSPGs are a receptor for the internalization of EVs 
on target cells. Therefore, in CLL patients, pre-treating EVs 
with HS analog (e.g., low molecular weight heparin) can 
reduce their uptake into the target cell through this receptor 
[38]. Exosomes have natural properties, including a structure 
that protects their contents from nuclease and protease 
enzymes, a nanometer-sized phospholipid in the membrane 
that minimizes their detection by phagocytic immune cells, 
low immunogenicity, and markers that help them stabilize in 
the body’s biological fluids. Combining these properties has 
led to an avenue for applying vesicles as tools for therapeutic 
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delivery [35].

Personalized Medicine in the Field of 
Hematology

Precision medicine, personalized medicine, genomic 
medicine, P4 medicine, and stratified medicine have almost 
the same meanings and can be used interchangeably. 
However, the term “personalized medicine” includes all the 
concepts and is more comprehensive. The general purpose 
of personalized medicine is to use appropriate doses of 
medicines at an accurate time based on the target genes of 
a patient and taking into account the patient-related factors, 
such as age, social status, ethical context, organ function, and 
the patient’s access to medical facilities. According to the pre-
clinical and clinical data, the personalized medication aims 
to improve the anti-neoplastic effects and diminish the side 
effects of the medicine. Studies in the field of hematology are 
advancing, and personalized medicine is developing. The 
concept of personal medicine in the field of hematology in 
general is: the use of specific treatment methods that are 
related to different factors of each patient, in order to select 
the optimal diagnostic method, prognosis, classification and 
special treatment strategy for each individual and at the 
most appropriate time in blood malignancies based on the 
relationship of malignant cells with other cells.

Conclusion and Perspectives

The EVs are known as submicron molecules, which are 
of importance in multiple physiological and pathological 
processes due to being secretion from diverse cells. Their 
unique cargos, genetic and epigenetic contents, and several 
specious molecules can change the function of normal 
and cancerous recipient cells. Therefore, they play major 
regulatory roles in providing a microenvironment to tumor 
cells, disease progression, immunosuppression, and drug 
resistance. In this review, we discussed the biology of 
nano sized vesicles and their role in anti-cancer medical 
resistance and therapeutic purposes in some hematological 
malignancies. As a result, in the current era of personalized 
medicine, creating engineered EVs containing special 
personalized medications along with some elements that 
increase their uptake may generate different new treatment 
approaches. These developed EVs could be evaluated further 
to improve treatment and outcome. These technologies 
can overcome hematological malignancies recurrence and 
enhance the quality of life.
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