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Abstract 

Iron is an essential nutrient for physiological cellular functions: as cofactor for key enzymes, it is involved in DNA 

duplication and repair thus representing a key element for cell replication, metabolism and growth. Due to its main 

role in iron storage, ferritin has been largely referred as redox-related protein for many years. However, increasing 

evidences suggest that perturbations of intracellular steady state amount of ferritin, and particularly of its heavy 

subunit (FHC), are key events in the pathogenesis of cancer initiation and progression. In the past decade many 

studies have demonstrated that FHC participates in cancer related pathways such as growth suppressor evasion, 

angiogenesis, epithelial to mesenchymal transition (EMT), dysregulation of chemokine signalling and enhanced stem 

cell expansion. The molecular mechanisms whereby FHC exerts these activities are either iron-dependent or iron-

independent. Among the latters, the ability to regulate critical oncogenes (c-myc, NF-kB) or tumor suppressors (p53) 

as well as to modulate oncomiRNAs expression and chemokine signalling (CXCR4) strongly suggests that FHC is a 

much more versatile protein than simply iron storage. The deep understanding of these novel and still not completely 

characterized functions, as well as the discovery of other potential properties, position ferritin as a promising target 

in cancer therapy. 
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interleukin-1α; HIF-1α: hypoxia inducible factor 1 
alpha; DAXX: death domain-associated protein; NF-kB: 

 nuclear factor kappa-light-chain-enhancer of activated 
B cells; VEGF: Vascular-Endothelial Growth Factor; 
PI3K: phosphatidylinositol 3-kinase; SDF-1: stromal 
cell-derived factor 1; CXCR-4: C-X-C chemokine receptor 
type 4; MOR: Mu opioid receptor; JNK-1: c-Jun N-
terminal kinases; ASK1: Apoptosis signal-regulating 
kinase 1; LIP: labile iron pool; TGF-β1: Transforming 
growth factor-beta1, CSC: cancer stem cells. 
      

Review Article 

Volume 3 Issue 2 

Received Date: April 13, 2018 

Published Date: April 23, 2018 

mailto:flavia.biamonte.fb@gmail.com


                          International Journal of Biochemistry & Physiology 

 

Biamonte, et al.Ferritin Heavy Chain: From Redox Cycling to Cancer Biology. Int J 
Biochem Physiol 2018, 3(2): 000123. 

  Copyright© Biamonte, et al. 

 

2 

Ferritin: The Iron Storage Protein 

     The fine homeostasis of iron, the most abundant and 
ubiquitously distributed metal element in our body, is 
among the most highly regulated biochemical pathway 
in the cell [1]. Iron acts as co-factor enabling the 
function of critical enzymes, including mitochondrial 
enzymes involved in respiratory complexes, enzymes 
involved in DNA synthesis as well as detoxifying 
enzymes such as peroxidase and catalase. Therefore, 
iron is implicated in many biochemical and 
physioloogical activities such as oxygen and electrons 
transport, energy metabolism, cell cycle regulation and 
DNA synthesis [1,2]. However, its ability to gain and 
lose electrons also leads iron to catalyse the generation 
of reactive oxygen species (ROS) by Fenton chemistry 
[3]. Through this reaction, less stable ferrous ions (Fe2+) 
are converted into the ferric form (Fe3+), thus 
consuming hydrogen peroxide (H2O2) and producing 
hydroxyl radicals (•OH) which, in turn, cause lipid and 
protein peroxidation and DNA breakage [3,4]. 
 
     Ferritin is the main iron storage protein that captures 
and “buffers” the intracellular labile iron in a non-toxic 
and readily available form thus playing a key role in 
maintaining the cellular redox homeostasis [5-7]. In 
mammalian cells, ferritin is localized in cytoplasm, 
mitochondria and nucleus [6,7]. The cytosolic form is a 
globular protein, constituted by twenty-four subunits of 
heavy- (H; FHC; FTH) and light-type (L; FTL) assembled 
to form a shell with a central cavity where up to 4500 
atoms of iron can be sequestered [8,9]. Ferritin H and L 
subunits share a homology of 50-56% in aminoacid 
sequence but are encoded by two different genes, both 
belonging to complex multigene families. FHC and FTL 
exert different functions: FHC has a ferroxidase and 
antioxidant activity and is devoted to rapid iron uptake 
and release while FTL has no ferroxidase activity but 
can alter the microenvironment to facilitate long-term 
iron storage [10,11]. The knock-down of the H-ferritin 
is embrionically lethal while its conditional inactivation 
in mice makes the animal more sensitive to oxidative 
damage [12]. It has been reported that the composition 
of the ferritin shell is not fixed but is rather widely 
variable and plastic. Depending on the metabolism 
patterns, the ratio of H to L subunits in ferritin can vary 
in a tissue-specific manner, with FTL being 
predominant in liver and spleen while FHC 
predominantly in muscle, brain, and heart [6,10]. 
Furthermore, the H-to-L ratio is modified in response to 
many stimuli such as during inflammatory and 
infectious conditions, differentiation and developmental 
transitions and in response to xenobiotic stress [6,10]. 
 
     Generally, intracellular ferritins amount is regulated 
by iron and oxidative stress suggesting that their major 
function is the parsimonious regulation of iron and ROS 
metabolism. The iron dependent regulation mainly 

occurs at post-tanscriptional level by the IRE/IRP 
machinery: in the presence of low iron, the iron 
regulatory proteins 1 and 2 (IRP1 and IRP2) bind to the 
iron reponsive element (IRE) in the 5’UTR of the ferritin 
mRNA thus inhibiting its translation; in high iron 
condition IRPs lose their affinity thus allowing the 
activity of the translation machinery [13-17]. However, 
an increasing number of reports show that the fine 
tuning of intracellular ferritin amounts is also operated 
by other factors such as during oxidative stress, 
inflammation and hypoxia [6,18]. In response to 
intracellular oxidative stress, ferritin and other 
antioxidant proteins are regulated at the transcriptional 
level by a cis regulatory element named Antioxidant 
Responsive Element (ARE) [19]. In particular the 
transcription of FHC gene is activated by H2O2 in a JunD-
dependent manner, thus protecting against the essential 
oxidative insult [20]. 
 
     Iron and its homeostasis are intimately linked to the 
inflammatory response. Iinflammatory cytokines, such 
as tumor necrosis factor-alpha (TNF-α) and interleukin-
1α (IL-1α), transcriptionally induce the H subunit of 
ferritin, thus inducing an accumulation of H-rich acidic 
isoferritins and substantially altering the shell subunits 
composition [21,22]. The regulatory elements 
responding to cytokines have been mapped in a cis-
acting element (FER2) located 4.8 kb upstream of the 
FHC transcriptional start site. During inflammation, two 
of the multiple NF-kB subunits, p50 and p65, also bind 
to this regulatory region causing H-ferritin up-
regulation and thus suppressing the generation of ROS 
[23]. 
 
     Several reports highlight that hypoxia is intimately 
tied to the local iron status mainly acting on 
translational efficiency of ferritin subunits. Both short-
term and long-term hypoxia conditions affect, though in 
different ways, IRP binding activity thus modulating 
ferritin expression [24,25]. By using different cancer in 
vitro models, it has been demonstrated that while a 
short-term hypoxia treatment is able to induce ferritin 
synthesis by decreasing IRP1 binding activity, long-term 
hypoxia conditions increase IRP2 expression and 
function thus leading to a decrease in ferritin synthesis 
along with an increase in iron uptake [24,25]. 
 

Ferritin and Cancer Biology 

     Numerous studies demonstrate with certainty that 
pathways of iron acquisition, efflux, storage and 
regulation are all perturbed in cancer, suggesting that 
the control of iron metabolism is a central aspect of 
carcinogenesis and cancer progression [26,27]. 
Consistent with this scenario, accumulating evidence 
indicate that ferritin, and above FHC, may be a relevant 
factor in most of cancer hallmarks such as enhanced cell 
growth and proliferation, angiogenesis, epithelial to 
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mesenchymal transition (EMT), dysregulation of 
chemokine signalling and more recently enhanced stem 
cell expansion [28,18]. Early informations about the 
relationship between ferritin and cancer stem from the 
observation that an increase in total ferritin as well as a 
shift toward acidic (H-rich) ferritins occurs in the serum 
of patients with various malignancies [29]. The specific 
mechanisms through which ferritin severely impact on 
these intricate processes is far from being totally 
defined; however, it appears that the involvement of 
ferritin in cancer biology is related both to its role of 
iron scavenger and to iron-independent activities such 
as oncogenes and/or tumor suppressors dysregulation 
and perturbation of oncomiRNAs networks [28,18]. 
Furthermore, we and others have demonstrated that 
ferritin can affect tumor cells either as oncogene or 
tumor suppressor in a context- or disease- specific 
manner thus making this picture even more complex. 
 

Ferritin and Cancer Cell Growth 

     One of the main abnormalities resulting in the 
development of cancer is the rapid and uncontrolled cell 
growth that is driven either by the hyperactivation of 
pro-survival signalling pathways, such as those of AKT, 
ERK and PI3K, or by the failure of pro-apoptotic signals 
[30,31]. A deep survey of the literature highlights that 
the link between ferritin and cancer cell growth is very 
complex and often conflicting since it is exerted in a 
cell-specific manner and through different mechanisms. 
In human metastatic melanoma MM07 cells and in 
erytholeukemia K562 cells, FHC-silencing is 
accompanied by decreased growth activity through the 
substantial modification of a repertoire of transcripts, 
miRNAs and proteins expression [32,33]. In particular, 
in K562 cells, the FHC-dependent modulation of miR-
125b affects RAF1/pERK1/2 expression leading to a 
reduced proliferation rate in the FHC-silenced cells [33]. 
On the contrary, in SKOV-3 ovarian cancer cells, the FHC 
knock-down lead to a significant increase of cell 
proliferation rate along with an enhanced glucose 
consumption and an accelerated metabolism [34]. In 
MCF-7 epithelial breast cancer cell lines, the analysis of 
the relationship between ferritin and cancer cell growth 
return conflicting results. In 2013, Alkhateeb, et al. 
demonstrated that both apo- and holo-ferritin increased 
MCF-7 cell proliferation thus suggesting an iron-
independent function [35]. Subsequently, in 2017, 
results from our laboratory showed that the knock-
down of the sole H subunit of ferritin increased MCF-7 
cell proliferation rate and that this was significantly 
affected by the FHC silencing-induced ROS production 
[36]. 
 
     Another mechanism through which ferritin could 
affect tumor growth is mediated by the modulation of 
either pro- or anti- apoptotic signals [28,18]. The tumor 
suppressor p53 is affected by alterations of the 

intracellular iron and redox state [37,38]. Furthermore, 
several reports suggest the existence of a complex link 
between p53 and ferritin often characterized by a 
regulatory feedback loop exerted in a context-specific 
manner. Zhang, et al. show that iron depletion and 
increased ROS production post-transcriptionally 
enhanced p53 that, in turn, increases FHC expression in 
order to prevent the propagation of the cell damage 
[39]. Conversely, results from our laboratory indicate 
that p53 inhibits H ferritin gene expression thus 
suppressing its ROS-scavenging activity and enhancing 
the pro-apoptotic effects of p53 [40]. Moreover, it has 
been also demonstrated that FHC physically binds p53 
and stabilizes the protein level under oxidative stress 
conditions [41]. 
 
     Several other studies suggest that ferritin act also a 
central hub in different anti-apoptotic pathways 
presumably by its anti-oxidant properties. In 1999, Xu, 
et al. demonstrated that the over expression of Bcl-xL, 
that protect astrocytes from glucose deprivation, is 
accompanied by the up-regulation of both L- and H- 
ferritins [42]. In line with these data, Yang, et al. showed 
that down-regulation of ferritin in MCF-7 cells results in 
increased apoptosis through the suppression of Bcl-2 
mRNA [43]. Subsequently, in 2003, Cozzi, et al. found 
that H-ferritin exerts a negative regulation on TNF-
induced apoptosis of HeLa cells in an iron-independent 
manner [44]. Additionally, it has been demonstrated 
that ferritin is also part of the anti-apoptotic activity of 
NF-kB. During inflammation, NF-kB antagonizes TNF- 
induced apoptosis by suppressing the accumulation of 
ROS. To this, NF-kB induces FHC, as antioxidant protein, 
which in turn promotes iron sequestration, inhibits ROS 
accumulation and prevents sustained JNK cascade 
activation [23]. Finally, a recent paper by Liu, et al. 
highlights, for the first time, that FHC is also able to 
suppress apoptotic signals by phisically interacting with 
the death domain-associated protein (Daxx), a highly 
conserved nuclear protein with pro-apoptotic functions 
through the Fas-Daxx-ASK1-JNK1 signaling pathway 
[45]. Overall, all these data indicate that ferritin play a 
dual role in the control of apoptosis that deserve further 
investigations in order to use this protein as powerful 
tool for differentially killing cancer cells. 
 

Ferritin and Angiogenesis 

     Angiogenesis, the complex process whereby new 
blood and lymphatic vessels form to supply nutrients 
and oxygen, is required for invasive tumor growth and 
metastasis and constitutes an important point in the 
control of cancer progression. It is finely modulated in 
response to a variety of chemical signals and factors 
among which vascular endothelial growth factor (VEGF) 
is one of the most important and a major target for 
cancer therapy [30,31]. Interestingly, numerous studies 
suggest the existence of a potential but still 
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uncompletely defined relationship between iron, 
ferritin and angiogenesis [46]. It has been demonstrated 
that iron deficiency promotes both expression and 
secretion of VEGF: in 1996, Beerepoot, et al. 
demonstrated for the first time that iron depletion, 
induced by treatment with iron chelator deferoxamine, 
promotes both expression and secretion of VEGF in 
several human, murine and rat cancer cells [47]. 
Accordingly, two more recent studies in breast cancer 
also showed that low iron levels lead to decreased 
ferritin expression and ehanced VEGF expression, 
through the increase of HIF-1α levels. These results 
were also confirmed in vivo and proposed as molecular 
basis of the high recurrence of breast cancer in young 
patients [48,49]. Conversely, a study by Harned, et al. 
highlights that the H-ferritin silencing and the 
consequent alteration in ferritin H:L ratio causes 
decreased nuclear translocation of HIF1-alpha and 
VEGF secretion [50]. 
 

Ferritin and Chemokine Signalling 

     Chemokines, chemotactic cytokines normally 
involved in the control of immune cell homing and 
migration, play a key role in the regulation of tumor 
growth by directly affecting tumor cells or indirectly 
affecting tumor microenvironment [30,31]. The 
chemokine CXCL12, also called stromal cell-derived 
factor-1 (SDF-1), binds the G-protein-coupled receptor 
CXCR4, which, through multiple divergent pathways, 
modulates chemotaxis, cell adhesion, survival and 
proliferation [51,52]. Several studies have 
demonstrated that CXCR4 is over expressed in human 
cancers where it exerts an oncogenic effect by 
contributing to tumor growth, EMT, metastasis and 
therapeutic resi stance [53,54]. Indeed, Roccaro, et al. 
demonstrated that CXCR4 over epression promotes the 
acquisition of an EMT-like phenotype in multiple 
myeloma (MM) cells leading to higher bone metastasis 
and extramedullary disease dissemination in vivo [55]. 
Accordingly, Grundker, et al. showed that CXCL12 
induces the over expression of EMT genes in MCF-7 and 
T-47-D breast cancer cells [56]. 
 
     In 2006, Li, et al. showed that CXCL12 promotes 
binding of FHC to CXCR4 in human embryonic kidney 
(HEK293) and HeLa cells. As a consequence, FHC is 
phosphorylated at serine 178 and translocated into the 
nucleus while CXCR4-mediated ERK1/2 activation and 
chemotaxis are strongly inhibited [57]. Later, the 
relationship between FHC and CXCR4 has been also 
investigated in neurons. In 2009, Sengupta, et al. found 
that, both in vitro (i.e. neuronal cultures) and in vivo 
(i.e. rat brain), the long-term treatment with Mu opioid 
receptor (MOR) agonists, such as morphine, inhibits 
CXCL12-induced activation of CXCR4 through the up-
regulation of FHC. Hence, CXCR4 activity and the 
downstream ERK and AKT signalling pathways are 

repressed [58]. Accordingly, results from our laboratory 
indicate that FHC knock-down is accompanied, along 
with increased ROS production, by a significant increase 
in CXCR4 surface expression and signalling in MCF-7 
breast cancer cells and in H460 non-small cell lung 
cancer cells [36]. In line with Sengupta, et al, we found 
that, among the downstream targets of CXCR4, FHC 
insists particularly on the ERK and PI3K-pAKT 
signalling pathways [36,58]. 
 

Ferritin and EMT 

     Epithelial to mesenchymal transition (EMT) is a rapid 
and often reversible phenomenon by which epithelial 
cells acquire mesenchymal, fibroblast-like properties. 
Particularly, through cytoskeleton re-organization, loss 
of cell-cell adhesion molecules, modification of cellular 
polarization, de novo expression of mesenchymal 
proteins and acquisition of stemness properties, cells 
undergoing EMT gain increased cell motility, invasive 
properties and resistance to anoikis. Hence, EMT is 
largely considered as a marker of metastasis and gain of 
invasiveness [30,31]. The analysis of the available data 
about H-ferritin and EMT suggests a cell type- and 
disease- dependent effect for FHC on EMT. In 2009, 
Zhang, et al, showed that cellular iron homeostasis 
regulated by FHC plays a critical role in TGF-β1–
induced EMT of AML-12 murine cells hepatocytes and 
A549 non-small cell lung cancer cells. In detail, the H-
ferritin decrease leads to an increase in the labile iron 
pool (LIP) and ROS generation, thus promoting EMT 
and enhancing cell proliferation and migration [59]. 
Accordingly with Zhang, et al., results from our 
laboratory highlight that in SKOV3 epithelial ovarian 
cancer, MCF-7 breast cancer cells and H460 non-small 
cell lung cancer cells the FHC knock-down lead to the 
acquisition of a strong EMT phenotype along with 
increased cell migration ability [34,36]. However, while 
in AML-12 cells EMT is promoted exclusively by TGF-
mediated ROS increase [59], in SKOV-3 cells the EMT 
and the more aggressive phenotype of FHC-silenced 
cells was due mainly to the altered expression of miR-
125b [34]. In MCF-7 and H460 cells the FHC-mediated 
regulation of EMT phenotype is partially due to ROS 
increase along with CXCR4 axis dysregulation [36]. 
 

Ferritin and Cancer Stem Cells 

     In the past 3 years, few research studies have 
supported a possible role of iron metabolism and 
ferritin in the expansion of cancer stem cells (CSCs) 
subpopulation. CSCs exhibit self-renewal capacity and 
are associated with cancer metastasis, tumor relapse 
and chemotherapeutic failure [30,31]. In human H460 
and H292 NSCLC cells, the subchronic exposure to iron-
induced oxidative stress leads to a remarkable increase 
in CSC spheroids in parallel with an increase in ABCG2 
CSC marker [60]. Accordingly, Hamai, et al. demonstrate 
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that iron-depletion, followed by an overproduction of 
ROS, promotes cancer stem cell death [61]. In SKOV3 
epithelial ovarian cancer cells, low FHC levels promote 
cancer stem cell spheroids accumulation along with the 
increase in stemness markers expression most likely 
through an iron-independent mechanism involving the 
regulation of miR-150 and miR-146a [34]. However, the 
available data are still limited and the molecular 
mechanism underlying ferritin action on CSCs 
propagation it’s all to be investigated. 
 

Conclusions 

     Since its key function in so many fundamental 
biochemical and physiological pathways, iron is 
considered a target of great interest in cancer research. 
In the past decade, ferritin and in particular the H-rich 
isoferritins play significant roles in many of the cancer 
hallmarks. Some of the FHC activities in tumor 
progression are directly related to the canonical iron 
management while others are iron-independent. The 
discovery of these new functions, mostly mediated by 
the regulation of gene, microRNA and protein 
expression, expands the global understanding of FHC as 
a more versatile protein with a strong potential as 
target in cancer therapy. 
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