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Abstract

Direct oral anticoagulants (DOACs) are a class of drugs that are prescribed for preventing and treating thromboembolism. The 
DOACs have better efficacy and do not require regular monitoring. However, in emergency scenarios where patients suffer 
from impaired renal function, haemorrhage, and ischemic stroke, it is critical to know that the drug concentration is ≤30 ng 
mL-1 before making any life-saving decisions. Traditional laboratory tests are insensitive to low concentrations of DOACs. 
Unlike traditional laboratory-based coagulation assays, point-of-care (POC) testing is better suited for this application. This 
review summarises the recent advancements in DOACs testing, focusing on the need for a whole blood-based electrochemical 
POC assay to quantify DOACs in an emergency care setting.
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Abbreviations: DOACs: Direct Oral Anticoagulants; 
FXa: Direct Factor Xa; POC: Point-of-Care; aPTT: Activated 
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Introduction

Thromboembolism-related complications such as 
myocardial infarction, stroke, and deep vein thrombosis 
are frequent causes of death and disability worldwide 
[1,2]. Traditionally, heparin and warfarin have been used to 
prevent and treat these diseases. However, warfarin, the only 
conventional oral anticoagulant, has several complications, 
including delayed action, interaction with other medications, 
complex dosing adjustments, and risk of bleeding [3,4]. 
These challenges led to the discoveries of newer agents 

known as direct oral anticoagulants (DOACs). DOACs are 
mainly divided into two categories based on inhibiting two 
different coagulation factors. These two classes are direct 
factor Xa (FXa) inhibitors (i.e., rivaroxaban, edoxaban, and 
apixaban) and direct thrombin inhibitors (i.e., dabigatran).

This review focuses on the various qualitative and 
quantitative assays for DOACs and their shortcomings. 
The need to quantify DOACs in the emergency point-of-
care setting when the test turnaround time is less than 30 
minutes. In addition, the current status of electrochemical 
POC systems to monitor DOACs are also discussed.

DOACs Testing

Experts believed regular coagulation monitoring was 
unnecessary when the first DOACs were introduced in 
anticoagulation therapy. Despite this, it would be crucial 
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to know the concentration of DOACs in the blood in 
circumstances such as severe bleeding, reduced kidney 
function, emergency surgery, the need for thrombolytic 
therapy in acute stroke, administration of an antidote for 
anticoagulant overdose, or the requirement to use other 
forms of anticoagulation [5-8]. In addition, small quantities 
of DOACs can interfere with thrombophilia testing [9]. For 
example, screening lupus anticoagulant by activated partial 
thromboplastin time (aPTT) or Russel viper venom time 
assay may inaccurately estimate test results. Dabigatran 
affects aPTT assay values, while dabigatran and direct 
FXa inhibitors affect Russel viper venom time assays [9]. 
Therefore, care must be taken to quantify residual DOAC 
concentrations present in the blood before thrombophilia 
testing [9].

Similarly, if patients are already under DOAC therapy 
and require emergency surgery, any concentration <30 ng 
mL-1 is considered safe to operate without any complications 
associated with severe bleeding. Likewise, in the case 
of patients suffering from acute ischemic stroke, DOAC 
concentrations <50 ng mL-1 may permit the initiation of 
thrombolytic treatment [10-12]. In some scenarios, when a 
patient admitted to an emergency centre is unconscious or 
unaware of DOAC therapy, it is vital to know anticoagulation 
status immediately before any clinical decisions are made 
[13]. A sensor that accurately quantifies DOACs <30 ng mL-1 
in a point of care setting at trauma and acute care surgery is 
desirable. However, it is not yet available.

Prothrombin Time and aPTT Assay for 
DOACs

Direct thrombin and direct FXa inhibitors commonly 
affect traditional clot-based assays like prothrombin time (PT) 
and aPTT [14]. When studies were conducted using a range 
of spiked plasma samples, they have shown that the effect of 
DOACs on other clot-based assays depends on reagents used 
to perform the tests. As a result, when commercial calibrators 
specific for dabigatran and rivaroxaban were tested against 
PT and aPTT reagents, clot-based assays became unreliable 
for the DOACs measurement since they tend to misrepresent 
drug quantities [15,16].

The early laboratory assessments of dabigatran and 
rivaroxaban showed a direct relationship between PT 
values and DOAC drug concentrations. When tested using 
PT reagents, rivaroxaban showed good sensitivity compared 
to dabigatran. However, this trend is a function of the PT 
reagent used [16]. For example, 120 ng mL-1 rivaroxaban 
showed a PT ratio between 1.15-1.56, whereas a PT ratio 
of 1.31-1.88 was reported for 200 ng mL-1 of dabigatran 
[16-20]. This trend was also observed with apixaban. The 
concentration required to double the PT values varied from 

480 ng mL-1(low sensitive reagent) to 1000 ng mL-1(high 
sensitive reagent) [16,21-23]. On the other hand, already 
existing PT/international normalised ratio (INR) reporting, 
which is calibrated initially for warfarin, becomes ineffective 
for DOACs measurement [24].

Mass Spectrometry

Liquid chromatography-mass spectrometry/mass 
spectrometry (LC-MS/MS) is a sophisticated analytical 
technique used in various fields of synthetic chemistry, 
analytical chemistry, and clinical laboratories. Highly reliable, 
sensitive to ultra-low concentrations, and quantifying DOACs 
with high specificity make the LC-MS/MS technique a gold 
standard in clinical chemistry [25-27]. Several research 
groups adapted this technique and reported 5-500 ng mL-1 
DOACs with a lower limit of detection of 0.025 ng mL-1 and 3 
ng mL-1 as the lower limit of quantification depending on the 
type of DOACs tested [16,28-31].

Despite being the most sensitive technique to quantify 
DOACs, LC-MS/MS is not used in a routine clinical setup. They 
are more limited to the central research laboratory, which 
requires trained operators to perform assays. Their longer 
turnaround time makes them unsuitable when time-critical 
measurements are needed during emergency surgery [32]. 
Coupled with other issues such as target molecule coelution, 
running regular internal calibrators, and lack of globally 
harmonised protocols makes the adoption of LC-MS/MS 
difficult [16].

Chromogenic Assay

Chromogenic assays are commonly used for the 
quantification of DOACs. The chromogenic assay is 
commercially available to quantify direct thrombin and FXa 
inhibitors. Chromogenic assay for a direct antithrombin drug 
such as dabigatran can be carried out by following a simple 
set of procedures; at first, a thrombin-specific chromogenic 
substrate is incubated with plasma spiked with dabigatran 
for approximately 2-3 minutes, then the addition of thrombin 
initiates the substrate cleavage, which can be monitored. 
This assay showed an impressive lower limit of detection 
of approx. 15 ng mL-1 for dabigatran and returned a good 
correlation with LC-MS/MS (R2=0.96, dabigatran <150 ng 
mL-1) [16].

Similarly, chromogenic anti-FXa assay kits are 
commercially available and widely used for heparin 
quantification. First, excess FXa enzyme is mixed with 
plasma spiked FXa inhibitor sample. This initiates FXa 
inhibition, and then subsequent residual free FXa enzyme 
cleaves chromogenic substrate, releasing p-nitroaniline 
(PNA) chromophore. The optical density measured at a 
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specific wavelength is inversely proportional to the inhibitor 
under investigation. An individual drug-specific calibration 
plot is used to calculate the unknown drug concentration in 
the sample.

Chromogenic anti-FXa assays have been widely used to 
quantify rivaroxaban, edoxaban, and apixaban. For example, 
they showed an excellent lower limit of quantification of 
15 ng mL-1 and 10 ng mL-1 for apixaban and edoxaban, 
respectively [17,18,33]. Nevertheless, this assay showed to 
be less sensitive to rivaroxaban, which could be attributed 
to the reagents used to perform the assay. This further 
emphasises the role of the reagents and methods used in 
controlling the DOACs lower limit of detection and lower 
limit of quantification observed [16,29,31,34,35].

Point-of-Care Assays

Undoubtedly, DOACs testing by standard methods 
can provide critical information to clinicians. However, 
if hospitals lack the infrastructure to report this DOACs 
concentration in less than 30 minutes during an emergency, 
the patient’s life may be at risk. Therefore, an alternative, 
point-of-care testing using whole blood samples is highly 
required. Currently, only a few point-of-care (POC) assays are 
available in the market. One such sensor uses patients’ urine 
samples treated with dabigatran, rivaroxaban, or apixaban 
for the qualitative and semiquantitative measurements [36]. 
Unfortunately, although this assay is a leap forward in POC 
testing, the urine sample of patients suffering from renal 
failure may underreport DOACs concentration. Furthermore, 
a microfluidic device for POC testing of heparin based on FXa 
activity using fluorescence technique has been developed. 
Nevertheless, its validation to DOACs quantification is 
unknown [37]. These devices required a calibration plot per 
drug tested, making the analysis tedious when the drug’s 
identity is unknown.

Electrochemical Testing

Electrochemical methods are particularly well suited to 
POC systems since they can be simple and easy to miniaturise 
devices. The Coagucheck system (Roche, Switzerland) 
is a commercially available POC platform used in clot-
based assays that works on an electrochemical detection 
platform. Blood collected from a finger prick is loaded into 
strips connected to a handheld device that analyses PT/INR 
values. Ebner et al. used the Coagucheck XS pro system to 
analyse DOACs concentration of patients samples and found 
that rivaroxaban showed an almost linear relationship 
(R2=0.82) with PT values [38]. However, this approach failed 
to detect apixaban and dabigatran accurately [38]. They 
recommended that this assay be used only if alternative 
anti-FXa measurements are not available to quantify low 

concentrations of DOACs [38]. As mentioned above, the 
tests designed explicitly for traditional coagulation assays 
such as PT/INR and aPTT are unsuitable for the sensitive 
quantification of DOACs (<30ng mL-1) [38]. To date, very 
little success has been achieved in providing a cheap, easy 
to operate, and highly sensitive alternative for quantifying 
DOACs at <30 ng mL-1 in POC setup. This further highlights 
the need for DOACs specific POC assays, especially at low 
concentrations of DOACs.

DOACs exhibit a mechanism of action by directly 
inhibiting thrombin or FXa, thereby regulating blood clots. 
Consequently, these enzymes become a common target for 
measuring the activity to predict and quantify drug effect on 
coagulation. Thrombin and FXa, two important coagulation 
factors, are protease enzymes. To date, the various 
analytical techniques used to quantify protease activity are 
colourimetric, Lou X, et al. [39] fluorescent Li J and Zhao Q, et 
al. [40,41], and electrochemical Zhang JJ, et al. [42-45] From 
these, the electrochemical method is the more studied due 
to its potential to create low cost, simplicity, reduced size, 
and high sensitivity devices. The different surface-confined 
electrochemical approaches used until now to determine 
protease activity are the following: Park S, et al. [46].
•	 Protease catalysed breaking of a thin film made up of 

gelatine or charged oligopeptide monolayer on the 
surface of the electrode.

•	 Protease catalysed breaking of chemically attached 
electroactive moieties such as 4-aminodiphenylamine, 
ferrocene, or methylene blue from the top layer of the 
electrode.

•	 Release of electroactive molecules such as 4-nitroaniline 
and 4-amino-2-chlorophenol from the substrate because 
of protease activity.

•	 Protease-induced fragmentation of polyionic polypeptide 
into shorter amino acids.

A clear drawback of these methods is that the sensing 
electrodes need to be modified with a film or a monolayer. 
Park and Yang adapted option 3 to produce a solution-based 
trypsin sensing method, with a detection limit of 1 and 100 
ng mL-1 when an incubation time of 120 and 30 min was used, 
respectively [46]. Although this work opened an exciting 
research avenue, it was not used to detect DOACs activity.

Conclusion

DOACs are at the forefront of managing anticoagulation 
therapy. Despite their broad advantages, they require 
monitoring in a few scenarios such as severe bleeding, 
reduced renal function, anticoagulation reversal before 
emergency surgery, or another form of anticoagulation 
therapy. Many traditional anticoagulation assays such as PT 
and aPTT have been used to monitor DOACs. However, they 
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fail to address the need for whole blood-based POCs that 
can quantify drug at <30 ng mL-1 within 30 minutes in the 
emergency care setting. In addition, a POC assay for DOACs 
must use inexpensive reagents and should be able to run in 
a routine setting with minimum intervention by a trained 
medical professional. POC assays that use electrochemical 
detection techniques are poised to fit the above requirements 
very well. Electrochemical-based POC assay for DOACs is a 
nascent but challenging research field that requires the full 
attention of analytical chemists. The assays and challenges 
discussed in this review provide the current status of a 
poorly explored research field. Further development is 
highly required to support better clinical decisions.
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