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Abstract

COVID-19 is rapidly spreading and there are currently no specific clinical treatments available. The absence of an immediate 
available vaccine against SARS-CoV-2 made it hard for health professionals to tackle the problem. Thus, the need of ready to 
use prescription drugs or herbal remedies is urgent. SARS-CoV-2 main protease (Mpro) protein structure is made available to 
facilitate finding solutions to the present problem. In this brief research, we compare the efficacy of some natural compounds 
against COVID-19 Mpro to that of Hydroxy-Chloroquine in silico. Molecular docking investigations were carried out using 
AutoDock. Virtual screening was performed using AutoDock Vina and the best ligand / protein mode was identified based 
on the binding energy. Amino Acids residues of ligands interactions were identified using free version of Discovery Studio 
Visualizer and PyMOL. According to present research results, Gallic acid, Quercetin, Hispidulin, Cirsimaritin, Sulfasalazine, 
Artemisin and Curcumin exhibited better potential inhibition than Hydroxy-Chloroquine against COVID-19 main protease 
active site. Our provided docking data of these compounds may help pave a way for further advanced research to the synthesis 
of novel drug candidate for COVID-19. 
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Introduction

Coronaviruses are a large family of enveloped, RNA 
viruses. There are 4 groups of coronaviruses: alpha and 
beta, originated from bats and rodents; and gamma and 
delta, originated from avian species [1]. Coronaviruses are 
responsible for a wide range of diseases in many animals, 
including livestock and pets [2]. In humans, they were 
thought to cause mild, self-limiting respiratory infections 
until 2002, when a beta-coronavirus crossed species 
barriers from bats to a mammalian host, before jumping to 
humans, causing the Severe Acute Respiratory Syndrome, 
SARS, epidemic. More recently, another beta-coronavirus 

is responsible for the serious Middle East Respiratory 
Syndrome, MERS, started in 2012 [3]. The novel coronavirus 
responsible for the Coronavirus Disease 2019 pandemic, 
COVID-19, is also a beta-coronavirus [4]. The genome of the 
virus is fully sequenced and appears to be most similar to 
a strain in bats, suggesting that it also originated from bats. 
The virus is also very similar to the SARS-coronavirus and 
is therefore named SARS-coronavirus 2, SARS-CoV 2 [5]. In 
order to infect a host cell, the spikes of the virus must bind to 
a molecule on the cell surface. The novel coronavirus appears 
to use the same receptor as SARS-coronavirus for entry to 
human cells, and that receptor is the angiotensin-converting 
enzyme 2, ACE2 [4]. Infection usually starts with cells of the 
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respiratory mucosa, and then spreads to epithelial cells of 
alveoli in the lungs. Receptor binding is followed by fusion of 
the viral membrane with host cell membrane, and the release 
of nucleocapsid into the cell. Currently, no specific clinical 
therapies are available for the treatment of SARS-CoV-2 
mediated infections [6]. Thus, the need of the hour is the 
identification and characterization of a new drug candidate 
to inhibit binding the COVID-19 main protease (Mpro). The 
Mpro plays an essential role in the virus replication process. It 
cleaves the pp1a and pp1b polyproteins, to release functional 
proteins including RNA polymerase, endoribonuclease and 
exoribonuclease. Therefore, inhibition of Mpro activity could 
stop the spread of infection, as the released crystal structure 
of Mpro (6lu7) was obtained by crystallization with a peptide 
like type inhibitor (N3). The enzyme has a molecular weight 
of 33.79 kDa and forms a dimer, where each monomer has 
three domains: domain I (residues 8–101) domain II (102–
184) consists of an antiparallel beta, and domain alpha III 
(residues 201–301). Thus, the His 41 and Cys145 catalytic 
ports located between domains I and II, while the amino 
acids, Thr24, Leu27, His41, Phe140, Cys145, His163, Met165, 
Pro168 and His172 form a hydrophobic environment in the 
pocket [7].

 To this aims, we have screened in silico the interaction 
between the main protease COVID-19 (Mpro) active site with 
natural compounds that displays a large variety of biological 
activities.

Experimental Design, Materials, and 
Methods

Computational chemistry or as known as molecular 
modeling is a fascinating branch of chemistry. It uses 
modeling and virtual simulations to help solve chemistry 
modern problems. Lately, virtual screening of compound 
libraries has become a standard technology in modern drug 
discovery pipelines [8]. In our study, to perform in-silico 
specific site docking, we used a powerful bioinformatics 
tool; AutoDock Tools-1.5.6. In order to visualize the data, we 
utilized a free version of MOE software (Molecular Operating 
Environment) and PyMOL software. 

Protein Selection and Preparation

The complete genome of the main protease of COVID-19 
was retrieved from PDB. PDB ID: 6LU7. 
The downloaded structures were prepared prior to docking 
as fellow:
First, we visualized the PDB file in PyMOL then removed 
Hetatms and kept only Chain A. Next, we optimized hydrogen 
bonds structures and added atoms in missing loops or side 
chains. Finally, we removed water molecules and saved our 
files in a PDB file format. 

Ligand Preparation 

The structures of our ligands were downloaded from 
PubChem (https://pubchem.ncbi.nlm.nih.gov) and saved in 
SDF format. Files were converted from SDF to PDB format 
using PyMOL.

Molecular Docking

For 6LU7 the center of active site of the grid was 
determined according to the position of peptide like inhibitor 
N3 in the structure [7]. The coordinates of the position are 
X: -16.308 Y: 11.57, and Z: 72.881 at grid spacing of 0.500 
Angstrom. Virtual screening was carried our using AutoDock 
Vina [9] and the best ligand / protein mode was identified 
based on the binding energy. The scoring function of AutoDock 
Vina is: C=∑i<jftitj(rij), where the summation is over all 
of the pairs of atoms that can move relative to each other, 
normally excluding 1–4 interactions, i.e. atoms separated by 
3 consecutive covalent bonds. Here, each atom i is assigned 
a type ti, and a symmetric set of interaction functions ftitj of 
the interatomic distance rij should be defined [9]. 

Pharmacophore Mapping

Pharmacophore, represents the spatial arrangement 
of features that is essential for a molecule to interact with 
a specific target receptor, is an alternative method despite 
molecular docking for achieving this goal. In this study, the 
pharmacophore mapping is carried out for the Gallic Acid the 
best ligand among the selected ligands using Free Version of 
Discovery Studio Visualizer. 

In silico ADME and Predicted Bioactivity Study 

Physiochemical and toxicological studies were conducted 
under SwissADME online software and Molinspiration 
online software (Table 3). The SMILES structures of ligands 
were obtained from PubChem database. The software allows 
us to compute and predict ADME parameters (Absorption 
Distribution Metabolism Excretion). Pharmacokinetic 
properties, “druglike”, nature and medicinal chemistry 
friendliness of molecules. Simulation of physiochemical 
and toxicological behavior of our ligands was obtained 
from SwissADME developed by the Molecular Modeling 
Group from the Swiss Institute of bioinformatics (http://
www.swissadme.ch/index.php). The parameters obtained 
are: Molecular Weight (g/mole), H-bond donors, H-bond 
acceptors, Lipophilicity (Log Po/w), Water Solubility (Log S), 
Molar Refractivity, Gastro Intestinal GI absorption, and 
Blood-Brain-Barrier BBB permeability. Predicted bioactivity 
parameters were completed from Molinspiration online 
software developed by Bratislava University (https://
www.molinspiration.com). The parameters obtained are: 
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G Protein-Coupled Receptor GPCR ligand; Ion channel 
modulation; Kinase inhibitor; Nuclear receptor ligand; 
Protease inhibitor and Enzyme inhibitor. 

Data 

In this research work: Figure 1. Shows the PDB ID, 
resolution and description of COVID-19 main protease 

selected for this study. Table 1 provides the structure of 
chosen ligands. Table 2 gives docking results of COVID-19 
main protease 6LU7. Table 3 represents the results the 
predicted physiochemical and biological activity of assessed 
molecules. The 3D interactions of the high scored ligands 
with COVID-19 main protease active sites are shown in 
Figures 2-10.

     

Figure 1: Structure representation of COVID-19 main protease (Mpro) in complex with an inhibitor N3. (A)-Representation of 
the crystal structure of COVID-19 main protease in complex with an inhibitor N3. (Yellow color: Mpro domain I, Bleu color: Mpro 

domain II, Red color: Mpro domain III. Green color: The peptide like inhibitor N3, Gray color represents coils). (B) 2D interaction 
of the peptide like inhibitor N3 with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Name of ligand Structure of ligand Name of ligand Structure of ligand

Quercetin Hispidulin

Cirsimaritin Artemisin
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Curcumin Hydroxy-
Chloroquine

Thymoquinone Gallic Acid

Sulfasalazine

Table 1: Name of ligand and structure (https://pubchem.ncbi.nlm.nih.gov).

Results 

Results of Binding Affinities of the Ligands into 
COVID-19 Main Protease (6LU7) Active Site

The binding energies obtained from the docking 
(AutoDock Vina) of the active site of COVID-19 main protease 
6LU7 were presented in Table 2. 

Gallic Acid, Quercetin, Hispidulin, Cirsimaritin, 
Sulfasalazine, Artemisin and Curcumin showed best binding 
energy to 6LU7 active site than that of Hydroxy-Chloroquine 
(Table 2). Gallic Acid: exhibited the first-lowest binding 
energy to 6LU7 (Binding energy to 6LU7= -8.3 kcal/mol). 
As shown in Table 2, Figure 2. Gallic Acid was well fitted 
into the active pocket of 6LU7. Gallic Acid formed hydrogen 
bonds with Ser144, Cys145, His163, Glu166, and Gln189. 
Furthermore, the aromatics groups of Gallic Acid were found 
to be interacting with Met165 and Cys145 via aromatic 
interaction. Gallic Acid aliphatic groups will be responsible 
for the formation of Van der Waals interactions.

Quercetin: exhibited the second lowest binding energy to 
6LU7(Binding energy to 6LU7= -7.5 kcal/mol). As shown 
in Table 2, Figure 3. Quercetin was well fitted into the active 
pocket of 6LU7. Quercetin formed hydrogen bonds with 
Leu141 and His163. Hydrogen bond interaction might be 
due to the 7 H-bond acceptors of Quercetin. As shown in 
figure 3 the aromatics groups of this flavonoid were found 
to be interacting with Glu166, Cys145, Met165, and Met49 
via a variant of aromatic interaction. Furthermore, Quercetin 
aliphatic groups will be responsible for the formation of Van 
der Waals interactions.

Hispidulin (Binding energy to 6LU7= -7.3kcal/mol): 
exhibited the third-lowest binding energy at the active site 
of COVID-19 main protease Table 2. Hispidulin was well 
fitted into the active pocket of 6LU7 and it formed hydrogen 
bonds with His163, Leu141, Ser144, and Cys145 Figure 
4. Furthermore, the aromatics groups of Hispidulin were 
found to be interacting with Met49 and Cys145 via aromatic 
interaction. Also, Hispidulin interacted with Glu166 and 
Phe104 via carbon-hydrogen bonds. Moreover, Hispidulin 
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aliphatic groups will be responsible for the formation of 
Van der Waals interactions, which compose a relatively 
hydrophobic environment.

Cirsimaritin (Binding energy to 6LU7= -7.2kcal/mol): 
Predicted results illustrate that 6LU7 critical binding 
residue; Glu166, Cys145, and Ser144 form hydrogen bonds 
with Cirsimaritin. The His163 and Glu166 residues interact 
with Cirsimaritin via carbon-hydrogen bonds. The aromatics 
groups of Cirsimaritin were found to be interacting with 
Met49 and Cys145 via aromatic interaction. Furthermore, 
the hydrophobic environment was composed of the aliphatic 
groups which are responsible for the formation of Van der 
Waals interactions (Table 2, Figure 5).

Sulfasalazine (Binding energy to 6LU7= -7.2 kcal/
mol): Amino acids predicted for Sulfasalazine binding in 
COVID-19 main protease were: Gly143, Ser144, Cys145, 
Met165, Leu167, and Pro168 as shown in Table 2, Figure 6. 
Sulfasalazine form hydrogen bonds with Gly143, and Ser144, 
and aromatic interaction with Cys145, Met165, Leu167, 
and Pro168. An amount of van der Waals interactions were 
composing a relatively hydrophobic environment.

Artemisin (Binding energy to 6LU7= -6.8 kcal/mol): 
Hydrogen bonding was predicted between 6LU7 actives sites 

His163 & Glu166 and the hydroxy functional group as shown 
in Table 2, Figure 7. Furthermore, van der Waals interactions 
were composing a relatively hydrophobic environment.

Curcuma (Binding energy to 6LU7= -6.8 kcal/mol): 
Hydrogen bonding was predicted between Glu 166 and the 
hydroxy group of the ligand (Table 2, Figure 8). A Pi-Sulfer 
and Pi-Alkyl interactions were predicted between Cys145 
and Met 165 with the aromatic group of the compound. 
Carbon-hydrogen bond and van der Waals interactions were 
predicted between Gln189 and Glu166 with the aliphatic 
groups of Curcuma.

Hydroxy-Chloroquine (Binding energy to 6LU7= -5.9 
kcal/mol): Hydrogen bonding was predicted between 
His164 and the compound (Table 2, Figure 9). Hydroxy-
Chloroquine aromatic groups were responsible for the 
formation of aromatic interaction with Met165 and His41. 
Carbon-hydrogen bond and Alkyl interaction were formed 
between Leu141, Cys145, and His14 within the aliphatic 
groups composing a relatively hydrophobic environment.

Thymoquinone (Binding energy to 6LU7= -5.1 kcal/mol): 
Pi-Alkyl interaction was predicted between Met165 and the 
aromatic group of the compound (Table 2, Figure 10). 

Ligand Vina score (kcal/mol) Receptor Interaction Distance (Å) E (kcal/mol)

Gallic Acid -8.3
N CYS 145 H-acceptor 3 -1.8
N GLU 166 pi-H 4.54 -1.3

OE1 GLN 189 H-donor 2.7 -3.4

Quercetin -7.5

OE2 GLU 166 H-donor 2.6 -3.6
O PHE 140 H-donor 2.72 -1.5

ND2 ASN 142 H-acceptor 3.41 -0.8
NE2 HIS 163 H-acceptor 2.87 -1.7

O LEU 141 H-donor 3.17 -1.6

Hispidulin -7.3
N CYS 145 H-acceptor 3.13 -2
CE MET 49 pi-H 3.64 -0.6

Cirsimaritin -7.2
N CYS 145 H-acceptor 3.12 -1.9
N GLU 166 H-acceptor 3 -0.8

Sulfasalazine -7.2 SG CYS 145 H-donor 3.59 -1.9
Artemisin -6.8 NE2 HIS 163 H-acceptor 3.2 -2.2
Curcuma -6.8 O HIS 164 H-donor 3.22 -0.9

Hydroxy-
Chloroquine -5.9

OD1 ASN 142 H-donor 3.36 -1.9
NE2 HIS 163 H-acceptor 3.18 -1.4
N GLU 166 pi-H 4.73 -0.9

Thymoquinone -5.1 5-ring HIS 41 H-pi 3.67 -0.8
Table 2: The hydrogen bond energy of the Gallic Acid, Quercetin, Hispidulin, Cirsimaritin, Sulfasalazine, Artemisin, Curcuma, 
Hydroxy-Chloroquine, and Thymoquinone binding to the cavity Mpro of COVID-19. Coordinates of the docking position are X: 
-16.308 Y: 11.57, and Z: 72.881. Grid resolution = 0.500 Angstrom.
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Figure 2: Representation of docked ligand-protein complex (A) animation pose of Gallic acid within the cavity of 6LU7, (B) 
2D interaction of Gallic Acid with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Figure 3: Representation of docked ligand-protein complex (A) animation pose of Quercetin within the cavity of 6LU7, (B) 
2D interaction of Quercetin with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Figure 4: Representation of docked ligand-protein complex (A) animation pose of Hispidulin within the cavity of 6LU7, (B) 
2D interaction of Hispidulin with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).
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Figure 5: Representation of docked ligand-protein complex (A) animation pose of Cirsimaritin within the cavity of 6LU7, (B) 
2D interaction of Cirsimaritin with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Figure 6: Representation of docked ligand-protein complex (A) animation pose of Sulfasalazine within the cavity of 6LU7, (B) 
2D interaction of Sulfasalazine with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Figure 7: Representation of docked ligand-protein complex (A) animation pose of Artemisin within the cavity of 6LU7, (B) 
2D interaction of Artemisin with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).
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Figure 8: Representation of docked ligand-protein complex (A) animation pose of Curcuma within the cavity of 6LU7, (B) 
2D interaction of Curcuma with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery Studio 
Visualizer).

Figure 9: Representation of docked ligand-protein complex (A) animation pose of Hydroxy-Chloroquine within the cavity of 
6LU7, (B) 2D interaction of Hydroxy-Chloroquine with amino acid residues of Mpro COVID-19. (Generated using Free Version 
of Discovery Studio Visualizer).

Figure 10: Representation of docked ligand-protein complex (A) animation pose Thymoquinone within the cavity of 6LU7, 
(B) 2D interaction of Thymoquinone with amino acid residues of Mpro COVID-19. (Generated using Free Version of Discovery 
Studio Visualizer).
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Results of Pharmacophore Study

The pharmacophore mapping is carried out for the Gallic 
Acid the best ligand among the selected ligands. 

The Gallic Acid showed nine chemical features including 
3 Hydrogen bonds acceptor, 1 Hydrogen bonds donor, 1 
Hydrophobic groups and 4 Aromatic rings (Figure 11A).

The chemical features of Gallic acid attribute a strong 
biological activity to the molecule as a protease inhibitor, 

enzyme inhibitor, kinase inhibitor and nuclear receptor 
ligand (Table 3).

According to in silico results, Hydrogen bonds acceptor, 
and Hydrogen bonds donor formed hydrogen bonds with 
Ser144, Cys145, His163, Glu166, and Gln189. Furthermore, 
the aromatics rings of Gallic Acid were found to be interacting 
with Met165 and Cys145 via aromatic interaction. Gallic Acid 
Hydrophobic groups will be responsible for the formation of 
Van der Waals interactions.

          

Figure 11: Pharmacophore Mapping of Gallic Acid. Cyan color- Hydrogen bonds Acceptor, purple color- Hydrogen bonds 
donor, orange color-Aromatic rings and green color-Hydrophobic group.

Results of in Silico ADME and Predicted 
Bioactivity Study

According to the in silico ADME study (Table 3) all 

assessed molecules conforms to Lipinski’s rule of five [10], 
(hydrogen bond donors ≤5; hydrogen bond acceptors ≤10; 
Molecular weight ≤ 500 Daltons; Octanol-water partition 
coefficient (log P) ≤5). According to the obtained results all 
the assessed drugs are safe for human use. 
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Artemisin 65030 262.3 1 4 1.53 -1.88 69.32 High Yes -0.06 -0.29 -0.93 0.28 -0.01 0.58

Cirsimaritin 188323 314.29 2 6 2.46 -5.22 84.95 High NO -0.09 -0.24 0.2 0.17 -0.31 0.14
Curcumin 969516 368.38 2 6 3.03 -4.45 102.8 High NO -0.06 -0.2 -0.26 0.12 -0.14 0.08
Hispidulin 5281628 300.26 3 6 2.12 -4.52 80.84 High NO -0.07 -0.22 0.21 0.2 -0.33 0.17
Quercetin 5280343 302.24 5 7 1.23 -3.24 78.03 High NO -0.06 -0.19 0.28 0.36 -0.25 0.28

Sulfasalazine 5339 398.39 3 8 2.3 -5.86 100.95 Low NO 0.03 -0.21 -0.02 -0.38 0.05 0.09
Thymoquinone 10281 164.2 2 0 1.85 -2.03 47.52 High Yes -1.4 -0.31 -1.27 -1.47 -1.45 -0.4

Gallic Acid 46780424 424.44 1 5 4.88 -9.11 119.15 High Yes 0.14 -0.01 -0.24 0.07 -0.1 0.09
Hydroxy-

Chloroquine 3652 335.9 2 3 3.37 -6.35 98.57 High Yes 0.35 0.3 0.44 -0.12 0.12 0.15

Table 3: Predicted physiochemical and biological activity of assessed molecules.
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Discussions

According to in silico results, Gallic acid, Quercetin, 
Hispidulin, Cirsimaritin, Sulfasalazine, Artemisin, and 
Curcuma have a better affinity against COVİD-19 protease 
better than Hydroxy-Chloroquine. The obtained results 
show also that Gallic acid, Quercetin, Hispidulin, Cirsimaritin 
and Sulfasalazine exhibited as the best potential inhibitors 
against COVID-19 main protease 6LU7. Quercetin is an anti-
oxidative flavonoid widely distributed in the plant kingdom, 
is a dietary antioxidant that prevents oxidation of low-density 
lipoproteins in vitro [11]. Quercetin is a flavonoid with a 
wide range of biological activities, is used in many countries 
as vasoprotectants [12]. Intake of quercetin was inversely 
associated with coronary heart disease mortality in elderly 
men [13]. Quercetin displays a large variety of biological 
activities including anticancer activity [13], cardioprotective 
[14], antioxidant and antidiabetic effect [15]. The protective 
effect of quercetin on chloroquine-induced oxidative 
stress and hepatotoxicity in mice was also approved [16]. 
According to in silico results, Quercetin have a better 
affinity against COVİD-19 protease better than Hydroxy-
Chloroquine. The obtained results show also that Quercetin 
exhibited as potential inhibitors against COVID-19 main 
protease 6LU7. Hispidulin, Cirsimaritin, and Artemisin are 
the main flavonoids isolated from Artemesia herba alba [17]. 
Artemesia herba alba displays a large variety of biological 
activities including antidiabetic, antihyperlipidemic and 
nephroprotective [18,19], cardioprotective [20], anticancer 
[21], antioxidant [19], antiprotozoal [22], gastroprotective 
[23], antibacterial [24], antihepatotoxic [19], insecticidal 
[25], Essential oils of Artemesia herba alba have also 
antihypertensive activities [26]. 

Sulfasalazine [Salazopyrin®] is an intestinal anti-
inflammatory, developed in the 1950s to treat rheumatoid 
arthritis [27]. According to in silico results, Sulfasalazine 
have a better affinity against COVİD-19 protease better 
than Hydroxy-Chloroquine. The obtained results show also 
that Sulfasalazine exhibited potential inhibitors against 
COVID-19 main protease 6LU7. Curcuma displays a large 
variety of biological activities including cardioprotective 
[28], anticancer [29], antiprotozoal [30], antibacterial [31], 
antihepatotoxic [32], insecticidal [33], the effect of curcuma 
in experimental malaria has been also demonstrated by 
Gomes, et al. [34]. According to in silico results, Curcuma 
have a better affinity against COVİD-19 protease better than 
Hydroxy-Chloroquine. The obtained results show also that 
Curcuma exhibited potential inhibitors against COVID-19 
main protease 6LU7. Thymoquinone (TQ) is one of the 
bioactive component derived from the medicinal plant Nigella 
sativa. Thymoquinone (TQ) exhibited many biological effects 
including antihistaminic effect [35], anti-asthmatic [36]. 
Cardioprotective [36], anticancer [37], antibacterial 

[38], antihepatotoxic [39], the effect of Thymoquinone in 
experimental malaria has been also demonstrated by El-
Sayed, et al. [40]. According to in silico results, Thymoquinone 
have a good affinity against COVİD-19 protease but its lower 
than Hydroxy-Chloroquine. The obtained results show also 
that Thymoquinone exhibited as potential inhibitors against 
COVID-19 main protease 6LU7 [41].

Conclusion

Spreading outbreak of COVID-19 has challenged the 
healthcare sector of the world in the last few months. To 
contribute to this fight against COVID-19, virtual screening 
based molecular docking was performed to identify novel 
compounds having the potential to bind Mpro of COVID-19. Our 
results demonstrate that Gallic acid, Quercetin, Hispidulin, 
Cirsimaritin, Sulfasalazine, Artemisin, and Curcuma have a 
better binding affinity to Mpro of COVID-19 protease better 
than Hydroxy-Chloroquine. Those molecules can be used 
as therapeutics against COVID-19. However, further studies 
should be conducted for the validation of these compounds 
using in vitro and in vivo models to pave a way for these 
compounds in drug discovery.
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