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Abstract

Microbial source tracking is a valuable tool in forensic science, specifically in the analysis of trace evidence. Numerous tools 
have been developed to estimate the proportion of different contamination sources within a mixture. In this study, we evaluate 
the accuracy of various source tracking methods using datasets from microbiome studies. In addition to assessing source 
tracking methods, we also incorporate two widely used cell type deconvolution methods, namely EPIC and PREDE, which 
are designed to identify missing cell types in a given dataset. Furthermore, we investigate the effectiveness of combined 
methods by integrating RAD, a source tracking method aimed at filtering out unimportant sources, with either EPIC or PREDE 
for enhanced accuracy in both source tracking and cell type deconvolution. This research represents a pioneering effort to 
examine the application of cell type deconvolution methods in source tracking and vice versa. Particularly noteworthy is 
our focus on scenarios involving missing sources or cell types in the reference data, shedding light on the intricate interplay 
between these two analytical domains.     
      
Keywords: Microbiome; Trace Evidence; Forensic Study; Deconvolution

Abbreviations: RMSE: Root Mean Square Error; RRMSE: 
Relative Root Mean Square Error; MD: Mean Absolute 
Difference.

Introduction

In forensic science, “trace evidence” refers to tiny 
pieces of materials or substances that a suspect may 
transfer to a crime scene, which may include things like 
hair, soil, fibers, glass, and other environmental objects 
[1]. These materials are often challenging to analyze 
using traditional fingerprinting methods. Modern DNA 
fingerprinting techniques typically involve analyzing Short 

Tandem Repeat and Single Nucleotide Polymorphism gene 
markers. These techniques use Polymerase Chain Reaction 
amplification to reduce the impact of contamination and 
degradation on DNA samples. However, in trace fingerprint 
samples, contaminants often make up a significant portion 
of the observed DNA [2].

Microbial source tracking is a valuable tool in forensic 
science, specifically in the analysis of trace evidence. 
Microbial source tracking offers an alternative approach 
to DNA fingerprinting in trace evidence analysis. It takes 
advantage of the fact that direct contact with an object can 
transfer millions of microbes almost instantly. Specifically, 
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microbial populations found on items touched by human 
hands are often made up of approximately 60% to 70% human 
skin-associated microbes [2,3]. In forensic applications, this 
technique can be used to trace which individuals may have 
had contact with trace evidence by analyzing the microbial 
profiles found on the evidence. In essence, microbial source 
tracking in forensics provides a new and promising avenue 
for identifying individuals who may have left trace evidence 
at a crime scene based on the unique microbial signatures 
they leave behind on objects they touch. It is evident how 
crucial it is to develop a more accurate approach for analyzing 
microbiome data.

There are various methods for microbial tracing, 
recognizing the significant role that microbiomes play in 
numerous aspects of life. These techniques aim to detect the 
distribution of microorganisms from each source to the sink. 
In the context of microbial community analysis, the objective 
is to identify the proportion of contamination originating 
from each source, employing methods such as SourceTracker 
[3], FEAST [4], RAD [2], and STENSL [5].

SourceTracker employs a Bayesian approach to 
estimate contaminant proportions in a community by 
analyzing similarities between a sink and potential source 
environments [3]. This method models the sink as a mixture 
of potential sources, considering unknown sources. However, 
it relies on computationally expensive Gibbs sampling, 
limiting its applicability to small to medium-sized datasets 
with a small number of sources [4]. To understand source 
contributions in mixtures, the RAD method uses the Aitchison 
distance to measure similarity between sources, preventing 
the misidentification of similar sources. However, it does 
not account for missing sources, limiting its adaptability to 
complex microbial communities. Despite this, RAD is highly 
beneficial in forensic investigations, excelling in sorting and 
quantifying microbes, making it effective for analyzing trace 
evidence in crime scene investigations [2].

FEAST, which stands for Fast Expectation-mAximization 
is one of the state-of-the-art methods for microbial source 
tracking [4]. It is widely used for source tracking [6] and for 
microbiome sample comparison and search [7]. It excels at 
estimating contributions from various sources, particularly 
in cases where some sources are unknown or not well-
understood. However, its performance may be compromised 
in situations with significant differences between source 
environments [4]. STENSL employs machine learning 
for source selection in complex microbial communities, 
enhancing accuracy by identifying crucial sources and 
minimizing interference from less relevant ones [5]. This 
method is particularly valuable when dealing with numerous 
potential sources from diverse environments, excelling in 

identifying contributors, including unknown sources, even 
in scenarios involving hundreds of potential environments.

The above methods are specifically developed for source 
tracking using microbial samples. Deconvolution methods 
developed for bulk genomic sequence data maybe borrowed 
for source tracking too. Bulk gene expression data typically 
represents the combined signal from multiple cell types in a 
tissue sample, making it challenging to discern the individual 
contributions of each cell type [8]. Deconvolution methods 
aim to address this challenge by inferring the relative 
abundance of different cell types within a complex mixture 
[8-10]. Many deconvolution tools have been developed to 
estimate the proportions of various cell types from bulk gene 
expression data [11-13]. Most of the deconvolution methods 
cannot deal with unknown cell types which are equivalent to 
missing sources in the source tracking problems. We focus on 
two methods, EPIC [14] and PREDE [15], which can provide 
estimates for unknown cell types for which no reference gene 
expression profile has been defined. Within the scope of bulk 
genomic community analysis, the bulk genomic samples can 
be treated as the sink in microbial source tracking, distinct 
cell types are like the sources. 

The PREDE method can be viewed as a generalization 
of reference-based and reference-free deconvolution 
algorithms. In addition, it can infer proportions of unknown 
cell types. EPIC provides reference profiles of gene expression 
based on RNA-seq data from non-cancerous and immune cell 
types found in tumors. EPIC can deal with cell types in tumor 
samples and sort out problems related to different amounts 
of genetic materials in these cell types. 

In this research we will assess and compare the 
accuracy of these two categories of methods, i.e., microbial 
source tracking and cell type devolution methods, on both 
microbiome data and genomic datasets. Various simulation 
studies and metrics are used to compare their performances 
in estimating the relative proportions of the sources.

Methods 

Analyzing microbiome data poses a significant challenge 
in pinpointing its potential origins [3]. The ability to trace 
individuals and the source of microbes in various samples 
has the potential to improve criminal investigations, address 
environmental contamination, and tackle public health 
concerns. The key focus lies in determining the original 
sources of these microbes. To obtain a more accurate 
estimation of each contributor’s proportion in the target 
location, we propose to combine the preprocessing step 
in RAD with the deconvolution method (either PREDE or 
EPIC). While RAD helps us identify important contributors/
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suspects/sources, in scenarios involving unknown sources, 
PREDE or EPIC can address the challenge.

To simplify the process, we filter out irrelevant sources 
that do not contribute to the specific location of interest. 
In the initial step, we utilize RAD to identify the relevant 
significant sources and subsequently remove those that are 
not present at the target location. In the second step, EPIC or 

PREDE is employed to estimate the proportion of sources that 
are currently present and an unknown source in the mixture 
if there is. These two methods are referred to as RAD+PREDE 
and RAD+EPIC. For the evaluation, we utilize the published 
synthetic datasets to compare the accuracy of these two 
combined methods (i.e., RAD+EPIC, RAD+PREDE) alongside 
others, on both the microbiome data and bulk genomic data. 
A real microbial data analysis is also conducted.

 

Figure 1: Workflow of the combined methods. The sample includes five sources of A, B, C, D and E. The first step is removing 
the irrelevant sources by applying the RAD method. Then by applying PREDE or EPIC, the proportions of the sources A, B, E are 
estimated, as well as the unknown/other source.

Synthetic Data Analysis

Data Generation 

Various methods exist for generating synthetic microbial 

data and bulk genomic sequence data. In this study, three 
distinct datasets are analyzed, comprising two derived from 
microbial data and one from bulk genomic sequence data. We 
explore different settings, and the specifics of each setting 
are presented in Table 1.

Data type Setting True composition of Evidence Available Sources

Microbial data set

Case 1 RAD simulation (0.6B + 0.3D + 0.1G) A~J

Case 2 RAD simulation (0.6B + 0.3D + 0.1G) A~J but G is missing

Case 3 FEAST simulation (0.5A + 0.4B + 0.1C) A, B, and C

Case 4 FEAST simulation (0.5A + 0.4B + 0.1C) A and B while C is missing

Bulk genomic data 
set

Case 5 PREDE simulation (0.08A+ 0.14B + 0.14C + 0.14D + 0.07E 
+0.13F + 0.11G + 0.12H + 0.0001I + 0.08J) A~J

Case 6 PREDE simulation (0.08A+ 0.14B + 0.14C + 0.14D + 0.07E 
+0.13F + 0.11G + 0.12H + 0.0001I + 0.08J) A~J but G is missing

Table 1: Simulation Settings the Dataset Consists of Two Types of Data: Microbial Data and Bulk Genomic Sequence Data. Each 
Setting Provides Unique Details, with Some Datasets Being Comprehensive and Encompassing all Sources, While in Others, 
One Source (G or C) is Absent.

Performance Metrics

To assess the accuracy of various methods, the average 
proportion estimates from 10 simulations for each scenario 
are compared using barplots. Additionally, four types of 
error metrics were calculated for each trial and replication to 
evaluate the performance of different methods in comparison, 
Root mean square error (RMSE), Relative root mean square 
error (RRMSE), Mean absolute difference (MD), and Mean 
relative difference or average residual error (AVGRE) [16]. 

Comparison Result for Microbiome Data 

Case 1: Synthetic Microbial Count Data without Missing 
Source: It can be seen in Figure 2, RAD+PREDE allocates 
a significant amount of mixture to an unknown category, 
which should not exit. SourceTracker attributes a certain 
proportion to each source. When comparing errors across 
methods (Figure 3), FEAST, EPIC, PREDE, and RAD+EPIC 
exhibit minimal absolute errors in terms of RMSE and MD. 
However, FEAST, EPIC, and PREDE display substantial 
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relative errors in RRMSE and AVERAGE due to assigning a 
small proportion to a false source (Source I). In contrast, 
RAD+EPIC emerges as the most accurate method. This is 

attributed to RAD identifying sources A, B, D, and G as crucial, 
and EPIC subsequently accurately estimating/refining the 
proportions of these significant sources only.

Figure 2: Barplots of case 1. Barplots of the estimated mean proportion of each source from the RAD data set with true 
setting of the evidence (= 60%B + 30%D + 10%G). The true proportion from each source is shown in red, and the Unknown 
source shows the estimated proportion that belongs to other sources (i.e., source not presenting).

Figure 3: Boxplots of metrics for case 1. Four metrics (RMSE, RRMSE, AVGRE and MD) are shown in four plots.
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The results of cases 2 to 4 are presented in Appendix. 
Similar to case 1, in the scenario of case 2, SourceTracker 
allocates proportions to each source (Figure S1). All 
methods, except RAD+EPIC, exhibit minimal absolute errors 
in terms of RMSE and MD (Figure S2). However, FEAST, EPIC, 
SourceTracker, and PREDE demonstrate significant relative 
errors in RRMSE and AVGRE because they assign more or 
less proportion to false sources H and I. Specifically, EPIC 
allocates a notable proportion to source I. Due to the filtering 
effect of RAD, only two true sources, B and D, are retained. 
Consequently, the combined method RAD+EPIC emerges 
as the most accurate, as it can detect the unknown source 
missed by the RAD-only method.

For case 3, when comparing these methods, STENSL 
exhibits the highest error across all metrics (Figures S3 & 
S4). Since there are only three sources (A, B, and C) and the 
evidence includes all of these sources, RAD does not filter 
out any sources. Consequently, EPIC and RAD+EPIC yield 
the same results, and PREDE and RAD+PREDE demonstrate 
comparable accuracy. Due to the detection of a tiny 
proportion by the EPIC method for an unknown source that is 
not supposed to exist, the relative error metrics (RRMSE and 
AVGRE) indicate that EPIC and RAD+EPIC are the second-
best options after RAD only. However, based on the absolute 
error plots (RMSE and MD), EPIC and RAD+EPIC emerge as 
the most accurate methods.

For case 4 where the evidence contains information 
from a missing source, the results are shown in Figures S5 
& S6, where the STENSL method has the largest absolute 

errors. The combination methods do not appear to benefit 
from filtration by the RAD method since both sources (A and 
B) are included, and no source is filtered out. By comparing 
methods using both the bar plots and box plots, we can 
conclude that FEAST stands out as the most accurate, while 
EPIC (or RAD+EPIC) emerges as the second-best option.

Comparison Result for Bulk Gene Expression 
Data

We applied all the methods to two scenarios of a bulk 
genomic dataset, evaluating their performance based on 
various metrics. For Case 5, simulated PREDE dataset focuses 
on bulk genomic data resembling evidence in microbiome 
studies, with various cell types included. The results are 
shown in Figures 4 & 5. 

Surprisingly, SourceTracker, originally designed for 
microbial source tracking, emerges as the most accurate 
method when compared to other approaches. This could 
be attributed to its intention to allocate proportions to all 
sources/cell types. FEAST, STENSL, and PREDE allocate 
some proportion to an unknown source that is not supposed 
to exist. Interestingly, all methods allocate a significant 
proportion (> 5%) to source I, despite its true proportion 
being extremely small (0.01%) (Figure 4). The combination 
methods do not enhance accuracy, given that all sources 
are already present in the evidence. Nevertheless, EPIC (or 
RAD+EPIC) remains among the top-performing methods, 
showcasing its effectiveness in this context. 

Figure 4: Figure 4: Barplots of PREDE data set, case 5 setting: The plots show the estimated average proportion of each 
source from PREDE simulation with true setting of the evidence (= 8%A+ 14%B + 14%C + 14%D + 7%E +13%F + 11%G + 
12%H + 0.01%I + 8%J).
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Figure 5: Boxplots of metrics for PREDE data set of case 5 setting.

The results of case 6 are presented in Appendix 
Figures S7 & S8. In this scenario with a missing cell type G 
and a rare cell type I, SourceTracker and FEAST, originally 
designed for microbial source tracking, emerge as the most 
accurate methods. Notably, FEAST allocates a more precise 

proportion to the true unknown/missing cell type. However, 
the combination methods do not improve accuracy, as the 
RAD method did not filter any source/cell type. Table 2 
summarizes the results for all cases.

Data type Setting True composition of Evidence Available Sources Recommended method (s)

Microbial data set

Case 1 RAD simulation A~J RAD + EPIC
Case 2 RAD simulation A~J but G is missing RAD + EPIC
Case 3 FEAST simulation A, B, and C EPIC & RAD + EPIC
Case 4 FEAST simulation A and B while C is missing FEAST

Bulk genomic 
data set

Case 5 PREDE simulation A~J SourceTraker
Case 6 PREDE simulation A~J but G is missing SourceTracker and FEAST

Table 2: Recommended Methods for Various Settings.

https://medwinpublishers.com/IJFSC/
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Real Data Application

In this section, we analyzed a real dataset obtained from 
an article in Environmental Science & Technology [17]. The 
research focused on studying microbial communities in the 
homes of seven families over a six-week period, revealing 
notable variations among households. The data consists of 
1478 samples from spike cows as a sink, and considered 14 
sources (Fecal beavers, Cats, Water, Effluent, etc). 

The sink represents special mesocosms created using 
spiked cows. The accuracy of different methods such as 
RAD, FEAST, STENSL, EPIC, SourceTracker and PREDE for 
analyzing this data set was compared. Considering two cases 
of comparing different methods: All sources are included 
with or without source effluent.

In Figure 6A, the analysis highlights that sources Geese, 
Water, and Horses have higher proportions according to the 
FEAST, STENSL, and EPIC methods. We did not include the 
combination methods because the RAD method just gives the 
water source. SourceTracker assigns proportions to every 
contributor even if an individual does not contribute to the 
evidence. To assess the impact of missing source, Effluent 

is considered as missing in Figure 6B. The plot continues 
to show that STENSL and EPIC indicate that sources Geese, 
Horses, Water and an Unknown source have the highest 
proportions, in that order. However, FEAST suggests that the 
highest contributors are Geese, Water, Cow and Unknown 
sources. In Figure 6C, the sources Effluent and Cows are 
missing. Except RAD and PREDE, all employed methods 
allocate proportions to the source Geese, Horses, Water and 
Unknown. When comparing the two plots in part (b) and (c), 
it is evident that FEAST, RAD, RAD+EPIC, and SourceTracker 
have increased the proportion of contamination from Horses.

Importantly, when handling real data, information 
regarding evidence availability is elusive. Upon comparing 
plots in parts (a) and (b), we observe an increase in the 
proportion of unknown sources for the EPIC and FEAST 
methods. Additionally, when comparing parts (b) and 
(c), similar trends are noted for EPIC and SourceTracker. 
Distinguishing differences between other methods proves to 
be a challenging task. In analyzing the three plots in Figure 6, 
it can be concluded that the EPIC method is more accurate in 
addressing missing sources among unknown contributors. 

Figure 6: Stacked bar plots comparing the proportions estimated from various methods. (a) All the sources are included. (b) 
All sources are included except the source Effluent. (c) All sources are included except the sources Effluent and Cows.

Discussion and Conclusion

As next generation sequencing technologies continue 
to expand, there are more and more microbiome data 
and bulk sequence data available to use. Nevertheless, 
obstacles persist, encompassing limitations in storage, 
risks of contamination, and the absence of robust datasets. 
There is an urgent demand for precise statistical methods 
with substantial efficacy in forensic, healthcare, and 
environmental applications [15].

In this project, our primary goal was to evaluate various 
methods used for source tracking, with a specific focus on 
their effectiveness when applied to datasets derived from 
microbiome studies. In addition to assessing source tracking 
methods, we incorporated two widely employed cell type 
deconvolution techniques, EPIC and PREDE, into our 
analysis. These methods are specifically designed to identify 
any missing cell types within a given dataset. Our findings 
emphasize that RAD+EPIC demonstrates high accuracy 
when applied to microbiome data with numerous irrelevant 
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sources. On the other hand, FEAST excels when dealing with 
microbial evidence containing a small number of sources. 
The accuracy of combined methods depends on the output 
of RAD, which plays a crucial role in diagnosing important 
sources. Very interestingly, the source tracking method 
FEAST performs well in cell type deconvolution. Through the 
analysis of real data, we have substantiated the accuracy of 
EPIC, particularly in cases involving missing sources.

In summary, we conducted a comprehensive 
evaluation of source tracking methods, integrating cell type 
deconvolution techniques, and emphasizing their accuracy 
in the presence of missing data in microbiome studies. 
Notably, we directed our attention towards scenarios 
involving missing sources or cell types in the reference 
data, offering valuable insights into the complex interplay 
between these two analytical domains.
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