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Abstract 

The Wei-Norman Formalism is applied to the problem of finding exact solutions to the Bloch Equations without 

relaxation for the Sin-Cos Pulse. Derivations of the solutions and comparison with numerical results are presented. The 

agreement is excellent. The method may be applicable to find the solution of the Bloch equations without relaxation for 

any amplitude and frequency offset functions. 
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Introduction 

The Bloch equations have played a pivotal role in the 
development of the field of Nuclear Magnetic Resonance. 
Because of their importance there has been a great deal of 
interest in analytic solutions of the system of equations 
for the magnetization. The case where the radiofrequency 
pulses are time independent has received a great deal of 
attention. The case where the RF is intrinsically time 
dependent has been treated far less in publications 
probably because the topic is more difficult to deal with. 

 
In this contribution, we outline a method to obtain an 

almost exact solution to the Bloch equations without 
relaxation for the case of time dependent RF. This method 
is based on the seminal work known in the Physics 
Literature as the Wei-Norman Method after the authors of 
the work. The group of Sanctuary [1] introduced this 

method to the NMR Community. Here we apply the 
method specifically, to the Sin-Cos pulse which has been 
of great interest for NMR applications. Although not 
explicitly shown, the author has applied the derived 
method to the HS1 pulse and Gaussian pulse and found 
also to be exactly solvable by the methods in this paper. It 
is tempting from this and a careful examination of the 
equations to postulate that the method will work for any 
RF pulse, Amplitude/ Frequency- offset pair, but this must 
be verified by further work. 

 
There has been interest in solutions of the Time 

Dependent Bloch equations. The Russian Group of Prants, 
et al. [2] applied group theoretic methods to the problem, 
but did not apply this method to the Sin-Cos pulse. Hioe’s 
Group [3], attacked the problem and presented 
exhaustive results for many types of pulses but did not 
consider the Sin-Cos pulse. We have been unable to find a 
specific treatment of the Sin Cos pulse in the extant 
literature available to us. 
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Theoretical Development 

We start with the Schroedinger equation governing 
the time evolution of the propagator: 
 

[ ]
[ ] [ ]

dZ t
iH t Z t

dt
                        (1) 

 
Here [ ]Z t  is the Propagator Operator and [ ]H t is the 

Hamiltonian of the system. Following the Formalism of 
Wei-Norman as explained in their seminal paper from the 
60’s we express the propagator as the product of 
exponential Rotation Operators, where the operators 
form a group [1] and the arguments of the Rotation 
Operators are elements of a Lie Algebra [1]. For the 
typical case in NMR considered here the Lie Algebra is 
fairly straight forward and consists of the angular 
momentum operators for spin ½ particles.  This makes 
calculations considerably easier to deal with.  
 

     ( ) 1 2 3Z t Exp g t I Exp g t I Exp g t Ix y zp p p
     
          

          

(2) 
 

Here the [ ]g tip  (i=1, 2, 3) can be complex quantities. For 

the case of spin ½ particles such as used in proton 
Nuclear Magnetic Resonance (NMR), we can simply define 
the Rf Hamiltonian as : 
 

 ( ) ( )H t w t I w t Ix z                             (3) 

 
Here the nomenclature of NMR calls [ ]t the pulse 

amplitude and [ ]t the frequency offset.  So now let us 

substitute the defined quantities in Eq (1). 
 

         

            

( )
( )1 1 2 2 3

( )1 2 3 2 3

dZ t
g t I Z t Exp g t I I g t I Exp g t I Exp g t Ix x x y y zp p p p pdt

Exp g t I Exp g t I g t I Exp g t I i w t I w t I Z tx y z x zp p p p

      
          

         
          

 

(4) 
 
Now we find we can define the inverse of the Propagator 
as the adjoint of [ ]Z t  as: 

 

     1( ) 3 2 1Z t Exp g t I Exp g t I Exp g t Iz y xp p p
         

          
  

(5) 
 
So we multiply both sides of Eq(4) from the right by Eq(5) 
to obtain: 

 
       

              

1 2 1 1

3 1 2 2 2 1

g t I g t Exp g t I I Exp g t Ix x y xp p p p

g t Exp g t I Exp g t I I Exp g t I Exp g t I i w t I w t Ix y y x x zp p p p p

     
      

            
              

(6) 
 

We need to evaluate the rotation operators. We use 
the following general relation which can be derived by 
expanding the exponential operators and collecting 
terms: 
 

         ,Exp A BExp A Cosh A A B Sinh            (7) 

 
We can use this expression to evaluate the rotation 
operators in Eq (6) as: 
 

       

   

,1 1 1 1

1 1

Exp g t I I Exp g t I Cosh g t I I I Sinh g tx y x y x yp p p p

Cosh g t I iI Sinh g ty zp p

           
               

   
      

 

 
We can evaluate the next set of rotation operators as 

follows  I y  to Iz  : 

  

       

       

1 2 2 1

2 2 2 2

Exp g t I Exp g t I I Exp g t I Exp g t Ix y z y xp p p p

Exp g t I I Exp g t I Cosh g t I iI Sinh g ty z y z xp p p p

        
              

         
              

 

 
We can evaluate the next set of rotation operators around

Ix  : 

  

[ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]
1 2 2 1

Exp g t I Exp g t I I Exp g t I Exp g t Ix y z y xp p p p
 

 
Cosh[ [ ]]Cosh[ [ ]] Cosh[ [ ]]Sinh[ [ ]] Sinh[ [ ]]

2 1 2 1 2
g t g t I iI g t g t i g t Iz y xp p p p p

 

 
 
We now substitute into Eq (6): 
 

[ ] [ ](Cosh[ [ ]] Sinh[ [ ]])
1 2 1 1

[ ]Cosh[ [ ]]Cosh[ [ ]] Cosh[ [ ]]Sinh[ [ ]]
3 2 1 2 1

Sinh[ [ ]]) ( [ ] [ ] )
2

g t I g t g t I iI g tx y zp p p p

g t g t g t I iI g t g tz yp p p p p

iI g t i t I t Iz x zp
 

 

 

    

 

 
After some simplifying algebra we obtain: 
 

1 2

2 1 2 1

3 2 1 2 1

[ ] Sinh[ [ ]] [ ]

[ ]Cosh[ [ ]] Cosh[ [ ]]Sinh[ [ ]] 0

[ ]Cosh[ [ ]]Cosh[ [ ]] [ ]Sinh[ [ ]] [ ]

p p

p p p p

p p p p p

g t i g t i t

g t g t i g t g t

g t g t g t ig t g t i t





  

 

   
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[ ] [ ] Sinh[ [ ]]
1 2

[ ] Cosh[ [ ]]Tanh[ [ ]]
2 2 1

[ ] [ ] Tanh[ [ ]] ^ 2
3 1

g t i t i g t
p p

g t i g t g t
p p p

g t i t g t
p p





  

 

   
                     

(8) 

                                    
This system of equations can be solved numerically to 

find the time dependent coefficients for the rotation 
operators that make up the propagator. 

 
Then the propagator can be applied to the angular 

momentum operators to find the time evolution of the 
magnetization for each angular momentum operator in 
the Rotating Frame. 

 

We next apply Z[t] in Eq (2) to , ,x y zI I I  to obtain the 

time evolution of the magnetization for the pulse defined 
in Eq (3) where the amplitude has the form: 
 

Sin[ ]
1 1

t   

 
And the frequency offset is given by: 
 

ω Cos[ω t]
1 1

 

                        

For concreteness if we consider the time evolution of xI , 

we have: 
 

†
[ ] [ ]Z t I Z tx  

 

Here 
†

[ ]Z t is the Hermtian Adjoint. We can do the same 

for the other components of the magnetization. We can 
express the results in terms of normal trigonometric Sine, 
Cosine functions or using Sinh, Cosh functions. For the 
ease of the reader we will use the Sine, Cosine option. The 
function for the gi’s may be obtained by solving the 
system of equations in Eq (8). 
 
We find the result: 

 

[ ] R [Sin[ [ ]]
2

I t ig tx e   

[ ] [Sin[ [ ]]] [Cos[ [ ]]]
1 2

I t R ig t R ig ty e e    

[ ] [Cos[ [ ]]] [Cos[ [ ]]]
1 2

I t R ig t R ig tz e e    

 
 
 
 

Results 

In Figures 1a & 1b we see plots of a comparison of the 
Wei Norman Solution as derived above, with the 
corresponding numerical solution of the magnetization 
components from the Bloch equations without relaxation 
for a Sin Cos Pulse with the RF amplitude on x. The 
solutions of the system of first order differential 
equations in time were obtained using the Function ND 
Solve in the Mathematical platform vs 11.1   utilizing a 
Runge- Kutta method.   As can be seen, the agreement 
between the two methods of solution as plotted in the 
figures is excellent.  Not shown, was a similar numerical 
comparison between the two solution methods for the 
HS1 pulse [4]. There also the agreement was excellent. 
 

 

 

Figure 1a: ω1 = 2π625.0HZ. Dotted line the numerical 
solution of the bloach equations. Solid line the wei-
norman solution for Ix. 

 

 
 

 

Figure 1b: Same as 1A for Iy. 
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Figure 1c: Same as 1A for Iz. 
 
 

Discussion 

The Wei Norman method for solution of systems of 
differential equations was introduced into the NMR 
literature in a seminal paper from Sanctuary’s group [1]. 
There the detailed development of the formalism was 
given, which can be elaborate. 

 
In contrast, the method we have detailed in this 

contribution is relatively straightforward. The reason for 
this is that for applications of the Wei Norman method to 
the solution of differential equations for rotations for a 
spin ½ nucleus using rotation operators is very “user 
friendly.”  The application of the rotation operator 
product representing the Time Evolution Operator for the 
spin system uses standard methods commonly utilized 
within the NMR community. 

 
Also, although not thoroughly tested and verified, for 

other pulse sequence combinations of RF amplitude and 
frequency offset functions, specifically for the HS1 and 
Gaussian pulses, the method also yielded exact 
agreement.  This raises the possibility that the method 
can be used for any RF amplitude offset pair. 

 
As alluded to in the introduction, there has been active 

interest in solutions of the Bloch equations with time 

dependent coefficients both with and without relaxation 
included.  In the paper by Prants et al. [2], group theoretic 
methods were applied to the solution of the Bloch 
equations for classes of Rf functions. The Sin Cos Pulse 
was not treated.  Hioe’s group [3], published an 
exhaustive compendium of solutions of the Bloch 
equations without relaxation using a method of solution 
completely different from the one employed in the paper 
we present here. The Sin Cos Pulse was not explicitly 
treated in the form we present. Rau [5], gave an 
exposition of a general method of attack for the unitary 
integration of Liouville Bloch equations, without treating 
a specific case. 

 
In short, the method of solution of the Bloch equations 

without relaxation presented here, using a variant of the 
Wei Norman formalism has successfully been applied to 
the solution of the Bloch equations without relaxation for 
the Sin Cos pulse. The detailed method may have utility 
for a variety of RF amplitude and frequency offset pairs. 
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