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Abstract 

The present investigation is the review on progress in theory of thermoelasticity with voids. The governing equations of 
thermoelasticity theory with voids are reviewed. Appropriate literature on theory of thermoelasticity with voids is also 
reviewed.
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Introduction

Theory of linear elastic materials with voids is an 
important generalization of the classical theory of elasticity. 
Materials having small distributed pores may be called 
porous materials or materials with voids. The intended 
application of this theory may be found in geological and 
biological materials like rocks and soils and in manufacturing 
porous materials for which classical theory of elasticity 
is not adequate. Nunziato JW, et al. [1] and Cowin SC, et 
al. [2] developed nonlinear and linear theory of elastic 
material with voids by using the concept of distributed 
body introduced by Goodman MA, et al. [3]. This linearized 
theory of elastic materials with voids is a generalization 
of classical theory of elasticity and reduces to it when the 
dependence on change in volume fraction and its gradient 
are suppressed. In the linear theory of elastic material 
with voids, the change in void volume fraction and strain 
are taken as independent kinematic variables. Iesan D [4] 
established a linear theory of thermoelastic materials with 
voids. He presented the basic field equations and discussed 
the conditions of propagation of acceleration waves in a 
homogeneous isotropic thermoelastic material with voids. 
He showed that transverse wave propagates without affecting 
the temperature and the porosity of the material. Iesan D [5] 

extended the thermoelastic theory of elastic material with 
voids to include initial stress and the initial heat-flux effects. 

Governing Equations

Following Iesan D [4] the constitutive relations, equations 
of motion and heat conduction equation for a homogeneous, 
isotropic thermoelastic solid with voids are: 
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where are the components of the stresses, is the density, 
are the material constants due to presence of voids, is the 
change in volume fraction field, is the thermal conductivity, is 
the heat flux, is the specific entropy, is the equilibrated stress 
vector, Equilibrated inertia, is the intrinsic equilibrated 
body force, is thermal constant, is the specific heat, is the 
displacement vector, is the absolute temperature, is the 
reference temperature chosen so that is the Kronecker 
delta, are the Lame’s constants, such that is the coefficient 
of thermal expansion, and superposed dot denotes the 
derivative with respect to time.

Literature Survey

In the last years, the thermoelasticity theories, which 
suppose finite velocity for thermal signals, have received 
many attentions. These theories are called generalized 
thermoelasticity theories. Lord HW, et al. [6] established 
the generalized thermoelasticity theory with one delay 
time while Green A, et al. [7] established the generalized 
thermoelasticity theory with two thermal relaxation times. 
Green A, et al. [8-10] presented three types of models (G-N 
I, G-N II, and G-N III). The constitutive formulations of G-N 
models are linearized, G-N I is similar to classical coupled 
thermo-elastic theory, type II shows the propagation of 
thermal signals with finite speed without energy dissipation, 
and type III suggests the finite velocity of propagation with 
energy dissipation. Tzou DY [11] reconstructed the Fourier 
law by introducing a couple of delay time translations well 
known as phase-lags and gave rise to the dual-phase-lag model 
of heat conduction. In order to secure the effects of small 
scale heat interactions within the solid particles without the 
loss of energy. Choudhuri SKR [12] has introduced the three-
phase-lag heat conduction equation in which the Fourier 
law of heat conduction is replaced by an approximation to a 
modification of the Fourier law with the introduction of three 
different phase-lags for the heat flux vector, the temperature 
gradient and the thermal displacement gradient. 

Dhaliwal RS, et al. [13] formulated the heat-flux 
dependent thermoelasticity theory for an elastic material 
with voids. This theory includes the heat-flux among the 
constitutive variables and assumes an evolution equation 
for the heat-flux. Ciarletta M, et al. [14] developed a 
nonlinear theory of non-simple thermoelastic materials 
with voids. Ciarletta M, et al. [15] studied some results on 
thermoelasticity for dielectric materials with voids. Marin M 
[16] studied uniqueness and domain of influ- ence results in 
thermoelastic bodies with voids. Pompei A, et al. [17] studied 
the asymptotic spatial behaviour in linear thermoelasticity 
of materials with voids. A theory of thermoelastic materials 
with voids and without energy dissipation is developed by 
Cicco SD, et al. [18], Ciarletta M, et al. [19] presented a model 
for acoustic wave propagation in a porous material which 

also allows for propagation of a thermal displacement wave. 
Singh B [20] studied the wave propagation in a homogeneous, 
isotropic generalized thermoelastic half space with voids in 
context of Lord and Shulman theory. Recently, Aoudai M [21] 
derived the equations of the linear theory of thermoelastic 
diffusion in porous media based on the concept of volume 
fraction. Othman and Abd-Elaziz EM, et al. [22] studied the 
effect of thermal loading due to laser pulse on generalized 
thermoelastic medium with voids in dual phase lag model. 
Othman and Abd-Elaziz EM, et al. [23] studied problem of 
plane waves in a magneto-thermoelastic solids with voids 
and microtemperatures due to hall current and rotation. The 
influence of Seebeck effect on a magneto-poro-thermoelastic 
medium is investigated by Abd-Elaziz EM, et al. [24]. Various 
researchers studied the effects of voids on plane and surface 
waves in thermoelastic solids [25-32].
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