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Abstract 

During the pilot expedition to the Southern Indian Ocean onboard ORV Sagar Kanya a total of twenty one surface sediment 
samples were collected along a north-south transect between 9.50 N to 55.010 S latitude and 73.560 E and 44.860 E longitudes. 
These samples were collected to study the response of carbon isotope (δ13C values) fractionation in calcareous shells of 
planktic foraminiferal species Globigerina bulloides towards the nutrient contents of the ambient sea waters along a north-
south transect in the south-western Indian Ocean. It may be inferred that isotopic values (δ13C) in general increase as the 
nutrient content of ambient water masses decreases in the regions south of 300S latitude. On the other hand δ13C values 
are relatively low in the region north of 30oS having higher nutrients in the ambient waters. The results of present study 
demonstrate the potential of foraminiferal δ13C values to trace the signature of paleo-nutrients changes in this region. The 
inferences drawn here further necessitates to take up similar studies along many transect in and around study area to arrive 
at a comprehensive picture. 
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Introduction

Nutrients are necessary for the growth and survival of 
animals, plants and other organisms. However, industrial, 
agricultural and urban development has dramatically 
increased nutrient levels in river systems, including 
nitrogen and phosphorus containing substances, degrading 
water quality, causing acidification and eutrophication and 
affecting aquatic ecosystems. Nutrient assessment and 
management in river systems has been an important part 
of water resource management for the past few decades, 
but the provision of appropriate and effective nutrient 
assessment and management continues to be a challenge 
for water resource managers and policy makers. Difficulties 

in assessment and management are due in part to the fact 
that nutrients in rivers may originate from a variety of 
sources, take numerous pathways and transform into other 
substances.

The isotopic compositions are a valuable tool to 
follow and trace the source and cycling of organic matter 
in the marine systems. The stable isotope composition of 
marine organisms is a fundamental property that reflects 
their physiology and status and are good tracers of their 
contribution in both supplying carbon to the marine food 
web and depositing carbon to the sediment. These Stable 
isotopes have also emerged as the powerful tools because 
they offer record of past environmental conditions such as 
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temperature, salinity, nutrients and pH as well as humidity, 
biodiversity, vertical migration of foraminifera during 
their life cycle, changes in symbiont photosynthetic and 
respiratory rates [1-7]. The distribution of d13C present in 
the ocean is closely related to the circulation pattern and the 
oxygen and nutrient contents of water masses [8]. Carbon 
isotopes are also a useful and underused indicator of net 
ecosystem production as elevated carbon isotope (δ13C) 
values are linked with areas and periods of high productivity. 
Accordingly carbon isotopic ratios of planktic foraminifera 
are being used to provide information about the changes 
in the oceanic nutrient concentration, ventilation and 
circulation pattern of the ocean waters [9-13]. The d13C of 
foraminifera are used to infer the influence of different water 
masses, exchange of CO2 between sea water and atmosphere 
and biological productivity and nutrient cycling waters 
[14,15] and to understand the processes responsible for the 
variability in atmospheric pCO2 from glacial to interglacial 
times [4,16-18].

Globigerina bulloides can be found in a wide range of 
thermal environments from subpolar to tropical ocean 
waters, although it is generally more abundant in cool 
subtropical/transitional waters [19]. In the study area G. 
bulloides dominates planktic foraminiferal assemblage. Its 
abundance increases considerably during periods of high 
phytoplankton productivity which may result from spring 
bloom conditions or upwelling [20]. Previous studies used 
the d18O data of Globigerina bulloides for inferring ambient 
environmental conditions both in space and time [20-23]. 
Although stable isotope data abounds in the literature, 
relatively limited data on d18C values of Globigerina bulloides 
is available for the Indian sector of the Southern Ocean. 

In this context, we present here a study of variation of the 
d13C values in the calcareous shells of planktic foraminiferal 
species Globigerina bulloides in surface sediment samples 
collected over the Southern Indian Ocean along a North-
South transect. Our analysis throws new lights on the 
observed d13C and environmental changes associated with 
different nutrient regimes. 

The Study Area

The Antarctic Circumpolar Current (ACC) which 
provides pathways between the major ocean basins, plays a 
vital role in the global redistribution of salt, nutrient, heat, 
etc [24,25] and provides the nutrient input to the Southern 
Ocean. According to Wyrtki [26], the ACC extends from the 
sea surface to depths of 2000-4000 m and can be spatially 
spread to the extent of 1000-2000 km. The water column 
circulation or mixing is also due to the rise of relatively 
warmer deep ocean waters to the colder surface of the 
ocean just south of the current which compensates for the 

sinking of surface water along the edge of icy Antarctica and 
further north. Ultimately, carbon sinks into the deep ocean 
as particulate organic matter. As the particulate matter 
decays, the carbon in the organic matter gets oxidised into 
carbon dioxide. Because of this deep ocean “biological pump” 
of carbon, the atmospheric carbon dioxide is lower than it 
otherwise would be [27]. 

The study area is an integral part of the South Indian 
Ocean where circulation is characterized by a subtropical 
anticyclonic gyre [26]. The poleward Agulhas Current lies to 
its west, the eastward flowing Antarctic Circumpolar Current 
(ACC) on its south and equator ward flowing West Australian 
Current on its east. The Subtropical Front (STF) is located 
at approximately 42-43˚S latitude in central south Indian 
Ocean. 

Southern Ocean, the study area is an important part of 
the global climate system and can be divided into three zones 
based on the dominant dynamics: The Western Boundary 
Current (WBC) zone (35°-45° S), the Antarctic Circumpolar 
Current (ACC) zone (45°-60° S) and the Seasonal Sea Ice 
(SSI) zone (60°-75° S). The WBC zone contains a number of 
energetic western boundary currents, such as the Agulhas 
Current, the Brazil/Malvinas Current and the East Australia 
Current. Hydrographic conditions in Southern Ocean (SO) 
are modulated by an eastward flowing Antarctic Circumpolar 
Current (ACC) which is embedded with numerous 
circumpolar fronts [28,29].

The barotropic Antarctic Circumpolar Current (ACC) 
reaches the ocean floor and is able to mix efficiently the 
North Atlantic Deep Water (NADW) and deep waters from 
Indian and Pacific Oceans. The mixture of these deep waters, 
the Circumpolar Deep Waters (CDW), then spreads back in to 
other oceans basins. 

It is well known that Antarctica Bottom Water and 
Circumpolar Deep Water (CDW) enter the Indian Ocean in 
the west off Madagascar and East Africa, and in the east along 
the Ninety East Ridge [30,31]. Furthermore, deep upwelling 
across the area north of 18° S with an intensity of about 4 
x 10-7 m/s, about three times larger than estimated for the 
Pacific and Atlantic Oceans has been noticed earlier [32]. A 
very strong, deep, meridional overturning cell, consisting of 
an inflow of 27±10 Sv below about 1800 m near 32º S and 
outflow above that depth was augmented by an Indonesian 
Through flow of 6.6 Sv has also been noticed [33]. The 
overturning circulation carries layers of warm near-surface 
water and cold deep water in alternate directions thereby, 
transporting heat along with allied properties. The Southern 
Ocean plays a unique role in the global scale overturning 
circulation as well due to the circumpolar connection in 
the Southern Ocean. Water found at intermediate and 
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abyssal depths at low latitudes rises towards the surface 
in the Southern Ocean. Deep water that upwells closer to 
Antarctica is cooled by the cold air blowing off the continent 
and its salinity is increased by brine released during sea ice 
formation. The dense water produced in this way sinks near 
the continental margin of Antarctica and returns to the north 
in deep currents flowing along the sea floor.
 

Various frontal regions such as, STF in between 42-43°S 
(water temperature ~13°C), SAF (seawater T in the range of 
7-9°C) identified between 44-45°S and (PF) between 52-56°S 
(seawater T near 5°C) have been demarcated on the basis of 
these physical properties of the water column. Sea surface 
temperature variation from 21.8°C to 19°C was reported 
between 35° to 40°S (salinity 34.2 to 35.5‰) [34]. The 
mixed layer depth was reported at 50-75 m in this region. The 
vertical variation of temperature indicates the possibility of 
thermocline depth upto 100 m. The temperature minimum 
was noticed around 100-200 m after the 49°S latitude [27]. 
The different sampling stations represent distinct latitudinal 
belt and can be grouped into several zoogeographic provinces 
which are primarily influenced by ecology and climate, 

namely tropical, subtropical, transitional and sub Antarctic 
[35-39]. 

Materials and Methods

A total of 21 recent sea surficial sediment samples 
(comprising Peterson grab, gravity and piston core-top 
samples), collected during the 199C and 200th (also known 
as Pilot expedition to Southern Ocean) cruises of ORV Sagar 
Kanya, and were used for the present study. Geographically 
this study area covers transect between 9.50 N to 55.010 S 
latitude and 73.560 E and 44.860 E longitude in the Indian 
Ocean Sector of the Southern Ocean (South western Indian 
Ocean). The locations of various stations are shown in Figure 
1. The calcium carbonate compensation depth and the 
lysocline in and around the study area lie below 4,400-4,700 
meters water depth [40]. All samples were collected well 
above this water depth (Table 1) to avoid any dissolution 
effects on the tests of planktic foraminifers. Table 1 showing 
details of sampling stations.

 

Sr. No. Sample No. Location Latitude Longitude Water Depth (M) Sampling Method
1. SK199C/03 09° 30.00’N 73° 30.60’E 1030 Peterson Grab
2. SK199C/06 08° 08.00’N 73° 33.86’E 2250 Spade Corer
3. SK199C/10 01° 55.38’S 67° 52.85’E 2597 Spade Corer
4. SK199C/12 04° 41.18’S 67° 05.75’E 3320 Spade Corer
5. SK199C/13 07° 21.89’S 67° 10.37’E 3305 Spade Corer
6. SK199C/14 09° 10.74’S 65° 57.33’E 3373 Spade Corer
7. SK199C/15 11° 25.46’S 67° 24.16’E 3513 Gravity Corer
8. SK199C/16 12° 35.56’S 67° 08.59’E 3722 Gravity Corer
9. SK199C/17 15° 16.71’S 66° 00.77’E 3368 Piston Corer

10. SK199C/19 16° 16.06’S 63° 27.86’E 4003 Piston Corer
11. SK200/05 28° 19.29’S 48° 43.56’E 2295 Piston Corer
12. SK200/09 30° 54.85’S 44° 51.37’E 2227 Gravity Corer
13. SK200/14 36° 07.30’S 44° 53.54’E 2805 Piston Corer
14. SK200/15 37° 00.00’S 44° 59.00’E 2984 Peterson Grab
15. SK200/17 39° 01.71’S 44° 58.17’E 4022 Piston Corer
16. SK200/19 40° 58.88’S 45° 03.53’E 2532 Piston Corer
17. SK200/21 43° 09.00’S 44° 59.00’E 3210 Peterson Grab
18. SK200/22A 43° 41.47’S 45° 04.22’E 2723 Piston Corer
19. SK200/23 44° 59.82’S 45° 00.83’E 1423 Piston Corer
20. SK200/27 49° 00.34’S 45° 13.11’E 4377 Gravity Corer
21. SK200/33 55° 00.39’S 45° 00.63’E 4185 Piston Corer

Table 1: Details of sampling stations, depth and sampling methods.
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Figure 1: Geographic setting of the sampling locations 
over the Southern Indian Ocean along the north –south 
transect of sampling station.

Immediately after recovery, the entire sediment sample 
(top 1 cm of the sediment core/grab) were stained with 
Rose Bengal and preserved in 10% formalin to differentiate 
living specimen of benthic foraminifera. In the absence of 
exact age date for the sediment samples, the stained benthic 
foraminifers collected at various stations are considered to 
reflect modern ambient conditions at the seabed. Accordingly 
the hydrographic characteristics of the uppermost 200 
meters of the water column would be tied to the planktic 
foraminiferal record of the seabed sediments.

About 5-10 g of sediments from each sample was first 

dried overnight at 45-50°C. The dried samples were then 
soaked with water, which was decanted several times, 
and lastly filled with distilled water. 10 ml of 10% sodium 
hexa-metaphosphate [Na (PO3)6] was added to each of 
the samples to remove the clay materials. After that, the 
samples were processed over 63µm sieve with distilled 
water. The >63µm material was dried at 45-50°C. The > 63 
µm fraction was dry sieved to get >150 µm fraction. From 
the >150 µm fraction an aliquot was taken by coning and 
quartering. The representative samples were weighed and 
hence used for picking of minimum 10-12 specimen of the 
planktic indicator species Globigerina bulloides from each 
sample to measure the carbon isotopic composition (d13C) at 
the Alfred Wegner Institute for Polar and Marine Research, 
Germany, with a Finnigan MAT 251 Isotope Ratio Gas Mass 
Spectrometer coupled to an automatic carbonate preparation 
device (Kiel I) and calibrated via NBS 19 to the PDB scale. 
The values are given in d-notation versus VPDB (Vienna Pee 
Dee Belemnite). Precision of carbon isotope measurements 
based on repeated analyses of a laboratory standard over a 
one-year-period was better than 0.06% for carbon.

 
To compare the present dataset with modern 

hydrography we used the average phosphate and nitrate data 
in the uppermost 200 m of the water column, extracted for 
selected positions along the transect from the NOAA World 
Ocean Atlas [41].

Results and Discussion 

In the study area, the (d13C) values in calcareous shells of 
planktic species Globigerina bulloides has varied from -1.97‰ 
(at station SK200/09) to 0.673‰ (at station SK200/27). 
While, the phosphate and nitrate values lie within the range 
1.26 µmol at station SK 200/21 and 7.66 µmol at station 
SK 200/19, and between 1.38 µmol at stations SK 200/5 
and 8.49 µmol at station SK 199C/12 (Figure 2a-c). It is 
interesting to note that nitrate ranges from 1.38 to 8.49 µmol 
at 9°N to 40°S, and south of 40°S from 1.97 to 5.32 µmol. 
Phosphate concentration varies from 2.23 to 3.67 µmol at 
10°N to 40°S, and thereafter from 1.26 to 7.66 µmol. 

The general profile from lower latitudes (9.69oN) to 
higher latitudes (55.01oS) along the transect revealed 
that carbon isotopic (d13C) values has shown a relatively 
decreasing trend from northern latitudes to upto 30oS 
latitudes further south of 30oS the values started increasing 
(Figure 2a). Contrary to it, the profiles of phosphates and 
nitrates have shown relatively lower values south of 30oS 
latitudes region with exception at station SK200/19 which 
shows spikes in the Phosphate values (Figure 2b-c). 
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Figure 2: a. Latitudinal variations in carbon isotope (d13C) values of planktic foraminiferal species G. bulloides. b. Latitudinal 
variations in phosphate content in sea waters. c. Latitudinal variations in Nitrate content in sea waters.

The Southern Ocean experiences unique physical 
processes that influence production particularly in this 
region. The nature and process associated with the sea ice 
around Antarctica have a dominant influence on water 
column structure, nutrient supply and primary production. 
Carbon isotopic values (d13C) are linked with the productivity 
/ nutrient contents of the water masses in which they grow. 
It has been noticed that the nutrient content and d13C of 
the Dissolved Inorganic Carbon (DIC) in sea water are 
negatively correlated owing to the fact that in surface water 
masses during photosynthetic carbon fixation nutrients 
and preferentially the light carbon isotope are utilized. 
Consequently, nutrients get depleted and d13C values of DIC 
enriches. As deep water masses mix and gain re-mineralised 
carbon from surface productivity during their oceanic transit, 
the d13C DIC value decreases as does the d13C of foraminiferal 
calcite secreted from these waters [42].

The results of the present study are in agreement with 
the above possible explanation in southern high latitude 
regions, showing relatively higher values of d13C in relatively 
nutrient depleted waters of south of 30o S latitudes (Figure 
2a-c). It seems that there is a negative correlation between 
d13C values and phosphate content in the region north of 
30°S latitude and also in the region south of 30°S latitude 
(Figures 3a-b). On the contrary, though the d13C values and 
nitrate content are found to be negatively correlated in 
the region south of 30°S latitude (Figure 3d), it does not 
necessarily show inverse relationship between d13C values 
and nitrate content north of 30°S latitude (Figure 3c). By 
contrast, nitrate concentration is higher in the region north 
of 30°S latitude with an increase value of d13C. Southwards 
from 30°S latitude, the d13C values decreases with increasing 
nitrate values. Does this imply that, compared to phosphate, 
nitrate concentration plays a less significant correspondence 
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with d13C values in the latitudinal corridor of 9°N to 30°S? 
Nutrient availability plays an important but indirect role 
in the variation of d13C values in the calcareous shells of 
Globigerina bulloides. Such an interesting correspondence 
between the d13C values and nutrients looks interesting and 
can be explained.
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Figure 3: a. XY plot between δ13C and Phosphate content 
in the region north of 30° S latitude. b. XY plot between 
δ13C and Phosphate content in the region south of 30° S 
latitude. c. XY plot between δ13C and nitrate content in the 
region north of 30° S latitude. d. XY plot between δ13C and 
nitrate content in the region south of 30° S latitude.

The nutrient availability (nitrate and phosphate) would 
control primary productivity as the distribution of dissolved 
oxygen, nutrients and carbon in the ocean is strongly 
affected by production of biomass in the euphotic zone, 
vertical particle fluxes and demineralization of particles 
during sinking and post depositional processes at the 
ocean floor. The major nutrients (nitrate and phosphate) 

required for phytoplankton growth are abundant in the 
surface waters of the sub-Arctic, Pacific, equatorial Pacific 
and Southern oceans. Our inferences are in agreement with 
the observations of the earlier workers who notices that 
generally foraminiferal d13C values decrease with increasing 
nutrient contents. The present results further support the 
views that the stable isotopic composition of Dissolved 
Inorganic Carbon (DIC) in sea water is inversely related to 
nutrient distribution. As stated earlier the photosynthetic 
fractionation in the euphotic zone and oxidation of sinking 
organic matter in deeper waters lead to high d13C values in 
nutrient poor waters and low d13C values in nutrient rich 
waters [43]. 

The distinct pattern of the carbon isotopic values (d13C) of 
Globigerina bulloides along north-south transect also reflects 
extraneous influences on carbon isotopes fractionation as the 
isotope equilibration of surface seawaters with atmospheric 
CO2 raises d13C values in cold surface waters and lowers d13C 
values in warm surface waters [44-47].

In view of the above, it may be summarized that the 
d13C values of the calcareous shells of planktic foraminiferal 
species Globigerina bulloides reflect the ambient sea water 
d13C composition and hence nutrient content of the ambient 
water masses. Our views are congruous with the earlier 
opinion that the carbon isotopic composition in Globigerina 
bulloides shows high correlation with the surface water 
phosphate values in surface sediments of N-E Atlantic and 
therefore may serve as a proxy for palaeo-nutrient and 
/ or palaeo-productivity [48]. The results obtained from 
Southern Ocean sediment traps experiments also indicated 
that d13C values of Globigerina bulloides is closely correlated 
to seasonal changes in nutrients indicating the utility 
of Globigerina bulloides d13C values as nutrient tracer in 
Southern Ocean environment [49,50].

However, the magnitude of the associated other factors 
such as, water chemistry and biological fractionation 
influencing d13C values of planktic foraminiferal shells make 
it difficult to assess absolute paleo-nutrient content.

Conclusions and Implications

Based on the present study, it may be inferred that 
though the results are preliminary in nature, yet the isotopic 
values (d13C) in general increase as the nutrient content of 
ambient water masses decreases in the regions south of 
30oS latitude. On the other hand in the latitudinal corridor 
of 9°N to 30°S, though phosphate content continue to exhibit 
a negative correlation, to some extent implying that nitrate 
content plays relatively less significant role in responding 
to d13C values at least in the above mentioned latitudinal 
corridor. Though the possibility of other factors influencing 
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isotopic values (d13C) in planktic foraminiferal shell may 
not be ruled out completely, the nutrient content of the sea-
water appears to correspond with isotopic values (d13C) of 
planktic foraminiferal species G. bulloides. Such an impact on 
stable isotopic composition of calcareous shells of planktic 
foraminifera looks significant from the view point of the 
recent phenomena of increasing acidifications of ocean at 
large. Impacts of such acidification on the productivity and 
or nutrient content of sea-water will likely to be more severe 
in higher latitude oceans owing to increased absorption 
of CO2 and the downward mixing of colder water in these 
regions into the deep ocean carrying carbon-di-oxide to 
deep waters. The results of present study underline the 
need for the development of quantitative determination of 
stable isotopic variations in response to the nutrient changes 
in modern marine environment prior to their application 
in assessing paleo-nutrients. Further, many such transects 
from different marine regimes of the world ocean need to 
be considered for such investigations to further augment the 
present inferences.
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