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 Abstract 

Thousands of patients suffer peripheral nerve injuries annually that lead to motor disability, dysesthesias, neuropathic 

pain, and lost economic productivity. The slow rate of nerve regeneration in humans of approximately 1 mm/day is 

associated with unpredictable and often incomplete end organ reinnervation. This brief review summarizes important 

research directions to improve outcomes of peripheral nerve injury and repair. 

 

 

Abbreviations: ES: Electrical Stimulation; MUNE: 
Motor Unit Number Estimation; PNA: Processed 
(Decellularized) Nerve Allografts; cAMP: Cyclic Adenosine 
Monophosphate; BDNF: Brain-Derived Neurotrophic 
Factor; FDA: Food and Drug Administration. 
 

Introduction 

     An ongoing challenge of many plastic surgery 
procedures is that of enhancing nerve regeneration to 
maximize motor and sensory recovery. Despite 
advancements in plastic surgery with vascularized 
composite allotransplantation, smart prosthetics, tissue 
engineering, robotics, and novel implant biomaterials, 
whenever peripheral nerves are injured or repaired, a 
major rate limiting step is the innate capacity of 
individual axons in the proximal nerve stump to sprout 
and regenerate to achieve end organ reinnervation. At the 
cellular level, multiple factors may affect the success of 
axon regrowth: neurotrophic factors, neurotropism 
(growth of axons down correct pathways), preferential 
motor reinnervation, revascularization, and fibrosis. In 

particular, nerve regrowth in settings of delayed repair or 
across long distances are significant challenges as 
individual neurons undergo chronic axotomy (a neuron 
cell body not in contact with its peripheral end organ, 
leading to loss of regenerative capacity) and chronic 
denervation (Schwann cells in the distal nerve stump not 
in contact with the neuron cell body, leading to loss of 
progressive atrophy, loss of proliferative and migratory 
ability, and an overall inability to support axon regrowth 
from the proximal stump) [1]. Incomplete or 
inappropriate nerve regeneration can lead to a host of 
morbid consequences, including neuropathic pain from 
neuroma formation, altered sensation following breast 
reconstruction, incomplete motor reinnervation in hand 
transplantation or synkinesis from misdirected axonal 
growth [2]. A theme present in many plastic surgery 
procedures is the restoration of function and quality of 
life, and thus the need to improve outcomes after 
peripheral nerve injury or repair remains a vigorous area 
of research. 
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     Brief electrical stimulation (ES) for 1 hour at 20 Hz has 
been shown to accelerate recovery after nerve injury in 
various animal models, including facial nerve, sciatic 
nerve, common peroneal nerve, and femoral nerve [3-6]. 
The effects of ES appear to accelerate the rate of axon 
crossing of suture sites, as opposed to increasing the 
innate rate of regeneration of 1-3 mm/day in rodents [7]. 
The cellular effects of ES are exerted proximally in the cell 
body, by upregulating factors such as GAP-43, BDNF, and 
cAMP. Importantly, stimulation periods of 1 hour or 
greater are equally effective in motoneuron recovery, but 
sensory nerve recovery is optimal at 1 hour and no 
longer, due to downregulation of trkB expression [8]. 
Experience of brief ES in human studies, while limited, 
has been logistically feasible and with very promising 
outcomes. One hour of 20 Hz ES immediately following 
carpal tunnel release in patients with electrophysiologic 
evidence of chronic median nerve compression 
neuropathy led to significant improvements in motor unit 
number estimation (MUNE), terminal motor latency, and 
sensory nerve conduction values [9]. Dramatic 
improvement in sensory modalities was noted with brief 
ES following digital nerve repair, while brief ES following 
cubital runnel release resulted in increased MUNE, grip 
strength and key pinch strength [10,11]. Brief ES is 
currently being investigated for restoration of sensation 
after alloplastic breast reconstruction [12]. In a different 
paradigm, selective ES of peripheral nerves has also 
shown effectiveness in spinal cord injury patients to 
restore mobility, as well as respiratory, bladder, and 
bowel functions [13]. 
  
     Nerve substitutes are an important resource for 
reconstruction of gap defects when autograft is limited or 
not available. Fresh nerve allotransplantation was and 
remains an area of great interest. Early experimental 
studies in rodents showed promising results, with 
histomorphometric measures of nerve regeneration and 
functional measures of target reinnervation comparable 
to that of autologous nerve grafts [14-19]. Reports of 
human studies of gaps as long as 37 cm similarly 
produced excellent outcomes. The main barrier to greater 
application has been the need for systemic 
immunosuppression to prevent allograft rejection. The 
use of cyclosporin A or tacrolimus (FK506) was necessary 
to prevent immune activation and fibrotic degeneration of 
the allograft. Interestingly, unlike other forms of tissue 
allotransplantation, immunosuppression for nerve 
allotransplants is transient and may be discontinued after 
regenerating host axons have traversed the graft without 
loss of function [20]. Nevertheless, the months to years’ 
long course of “temporary” immunosuppression has been 
a barrier to greater acceptance, for fear of eliciting 

systemic toxicity upon the patient. Fortunately, there have 
been important advances in nerve substitutes such as 
biosynthetic conduits and processed (decellularized) 
nerve allografts (PNA), which are readily available “off the 
shelf.” Since the FDA approval in 2007 of AxoGen’s Avance 
PNA, over 15,000 have been implanted in humans. 
Excellent clinical outcomes have been reported for small-
calibre nerve gap defects up to 30-40 mm in length [21-
23]. Reports for larger-calibre and longer nerve gaps have 
had variable results [24-26]. Promising future strategies 
include supplementation of PNAs with neurotrophic 
factors, Schwann cells, or stem cells to restore a more 
biologic environment for regenerating axon growth cones 
[27-29]. 
 
     Finally, novel methods of local drug delivery have 
potential for improving nerve regeneration [30-32]. In the 
case of hand transplants, tacrolimus given as part of the 
immunosuppression protocol resulted in unexpectedly 
rapid nerve regeneration and target reinnervation [33]. In 
order for tacrolimus to be used more widely, its 
neuroenhancing effects must be isolated from its 
immunosuppressive effects. Hydrogel delivery systems 
with encapsulation of a drug in microspheres with 
predictable release kinetics offer a promising avenue for 
targeted and sustained neurotrophic drug delivery [34]. 
  
     Advancements in strategies to enhance nerve 
regeneration such as electrical stimulation, nerve 
substitutes, and local drug delivery will play an important 
role in optimizing outcomes after progressively more 
advanced transplantation procedures, brain-machine 
interfaces, biomaterials, and fundamental plastic 
surgeries such as compression neuropathy and breast 
reconstruction. 
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