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Abstract 

Diseases related to aging burden irreparable damage to elderly. Interestingly, aging has an increasing trend in world 

population. Therefore, there is a dire need to solve problem. Alzheimer disease is one of the most common 

neurodegenerative diseases in worldwide. Based on previous studies, there is no promising treatment for Alzheimer 

disease and this treatment cannot inhibit disease progress. Given that induction of oxidative stress and inflammation 

during Alzheimer disease, thus their abrogation is an ideal strategy to treat Alzheimer disease. It have been reported that 

natural products have therapeutic effects against Alzheimer disease and in other word they are promising therapeutic 

options for patients with Alzheimer disease. In addition, they can use in all patients due to simple access and low cost. In 

this review study, we describe effects of natural products in treatment of Alzheimer disease. 
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Introduction 

     Alzheimer disease is a neurodegenerative disorder that 
is considered as a dementia along with dysfunction in 
memory particularly working and episodic memory [1,2]. 
Generally, Alzheimer disease is observed as sporadic 
(commonly) and familial (rarely and due to mutations in 
genes of amyloid β precursor protein, presenilin 1 and 
presenilin 2 [3]. Synapses losing, increase of extracellular 
amyloid beta, increase of intracellular neurofibrillary 
tangles caused by aggregation of hyperphosphorylated 
Tau, formation of senile plaques commonly occur during 
Alzheimer disease [4]. In addition, it has been reported 

that AD patients, who had mild cognitive impairment 
(MCI) there is high level of isoprostanes as products of 
polyunsaturated fatty acid oxidation [5]. It has been 
estimated that 5.3 million Americans suffered from AD so 
that 84,767 of patient are died, in other word AD is a main 
reason of mortality among elderly [6]. In 2013, it has been 
reported that there is 160287 Portuguese people, who 
suffered from Alzheimer’s disease. This numbers contain 
5.91% from individuals aged ≥ 60 years [7]. According to a 
study in Taiwan, there was 5.63/1,000 persons AD patient 
in 2005 so that its incidence reached to 8.17/1,000 
persons in 2010. This incidence led to spend Taiwan 
dollars (NT$) 205,413-227,110 in order to hospitalization 
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of patients [8]. Study on costs related to health care in AD 
patients was revealed that $226 billion pay to treat these 
patients [6]. Based on these finding, AD is a serious threat 
for health human at near future. Brain is susceptible to 
oxidative stress due to lack of a potential antioxidant 
defense besides it is main source of ROS thus under any 
oxidative conditions, brain damage is very possible [2]. 
Based on previous studies, synaptic dysfunction and 
neuronal death result from increase of free radical in 
cytoplasm [9-12]. In a study, it has been showed that AD 
patients, who had mild cognitive dysfunction, have low 
level of SOD and GPX and high level of MDA in serum. 
Indeed, oxidative stress is a significant mark in these 
patients [13]. Location of amyloid precursor protein and 
amyloid β in mitochondria can be affective in their 
dysfunction particularly in neurons of hippocampus [14-
16]. In other word, mitochondria dysfunction is one of the 
main reasons AD pathology so that ATP synthesis 
inhibition, induction of mitochondrial permeability 
transition pore and apoptosis induction through 
cytochrome c releasing and apoptosis-inducing factor into 
cytoplasm and activation of caspase cascade occur during 
AD. It seems that entering of Ca2+ to mitochondria has 
pivotal role in initiation of these events [17]. Generally, 
mtDNA is susceptible to damages related to ROS due to 
lack of protective proteins such as histone, efficient DNA 
repair system and ROS generation in their vicinity that 
lead to increase of oxidative damage in mtDNA of neurons 
related to an AD patients [18]. Based on previous studies, 
it have been confirmed role of stress oxidative in damage 
to mtDNA [16,19]. In addition, it have been observed high 
level of mutations such as 5-kb deletion in mtDNA 
obtained from brain of AD patients [16,20]. According to 
recent data about association between neuroinflammation 
and AD, it has been revealed that immune system-
mediated actions was observed during AD so that it can be 
one of the therapeutic goals to treat AD [21]. Indeed, 
misfolding and aggregation of amyloid protein leads to a 
potential immunogenicity that induces inflammation in 
brain of AD patients about 10-15 years before any clinical 
manifestation [22]. Induced inflammation is main factor to 
act microglia that it is very affect in neuronal and synaptic 
damage, but reaction of microglia can be a defense act to 
clear toxic amyloid-β species [23,24]. Protein 

 carbonylation occur at high level in proteins such as 
glutamine synthase, creatine kinase and ubiquitin carboxy-
terminal hydrolase L-1 in brain’s different regions include 
hippocampus, inferior parietal lobe, cerebellum and 
frontal and temporal lobes [25-27]. Neurodegenerative 
processes commonly occur in postsynaptic regions caused 
by calcium influx and oxidative stress induction through 
activation of glutamate receptors [21]. In addition, reduced 
metabolic activity leads to oxidative damage and 
ultimately deleterious of mitochondrial components 
during AD [16,28]. Indeed, given that reduced energy 
metabolism is considered as an abnormality during AD 
therefore low glucose metabolism at baseline and 
longitudinal glucose metabolism decline can be useful tool 
to monitor diagnosis and predicting of MCI [29-31]. 
Despite performed efforts, there are many challenges to 
treat Alzheimer disease; in fact current therapeutic 
strategies to attenuate AD cannot inhibit progress of 
disease [32]. Concomitant by increase of AD patients but 
promising therapy had not dramatically development, 
although acetylcholinesterase (AChE) inhibitors still use 
among these patients but they have not prominent effect to 
inhibit AD progress [33]. Natural products are one of 
potential source in order to achieve a useful therapy due to 
be available, low cost and to have antioxidant and anti-
inflammatory properties [33]. In other word, in order to 
diminishing of costs related to Alzheimer treatment use of 
natural produce with neuroprotective property is need, 
however it has dire need to investigate either in vitro or in 
vivo studies [34,35]. Use of an antioxidant regimen can be 
a useful method to abrogate ROS and their complication in 
AD so that their administration led to reduction of AD 
progression [28]. In this study, we reviewed the role of 
natural compounds in treatment of Alzheimer.  
 

Review Method 

     In order to obtain better results, we searched papers 
related to Alzheimer using keywords such as natural 
product and Alzheimer disease, natural compounds and 
Alzheimer disease, animal model of AD and natural 
product in databases of web of science, PubMed and 
Scopus from 2000 to now. In final, the papers were read 
and summarized (Table 1). 

 
Compound AD model Finding(s) References 

Quercetin 

Drosophila model with Aβ 
accumulation 

Up-regulation of genes related to cell cycle 
and DNA replication 

[36] 

3xTg-AD mice 
Enhancement of histological changes and 

cognitive and emotional dysfunction 
[37] 

APPswe/PS1dE9 Tg mice 

Reduction in senile plaque, improvement of 
mitochondrial dysfunction by AMPK 

activation and enhancement of cognitive 
deficit 

[38] 
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Aged wild-type mice, AD patients in 
early-stage 

Improvement of memory recall [39] 

Epicatechin AD mice with tau abnormality 
To have protective effect in reduction of tau 

abnormal from 
[40] 

Ellagic acid 
Rats with AD caused by beta 
amyloid25-35 microinjection 

Promotion of acetyl cholinesterase 
reactivation 

[41] 

Caffeic acid 

Aβ25-35-induced AD mouse 
Inhibition of cognitive deficit, reduction of 

lipid peroxidation and nitric oxide level 
[42] 

AD rats 

To have antioxidant and anti-inflammatory 
effects, cognitive dysfunction improvement, 
regulation expression and phosphorylation 

of p53 

[43] 

Curcumin 

AD rats 
Binding to iron and copper, reduction of Aβ 

toxicity and inflammation 
[44] 

Alzheimer transgenic APPSw mouse 
model 

To have antioxidant and anti-inflammatory 
effect, reduction of Aβ, GFAP and 

microgliosis 
[45] 

APPswe/PS1dE9 AD mice model 
Senile plaques reduction, inhibition of 

dystrophic dendrites 
[46] 

Soy isoflavones 

ovariectomized-induced 
Alzheimer's disease 

Spatial learning and memory improvement [47] 

d-galactose-induced aging in 
C57BL/6J mice 

Reduction of stress oxidative and Aβ toxicity [48] 

Genistein Aβ(1–40)-induced AD model in rats 
To have anti-oxidant effects, improvement  

of cognitive dysfunction 
[49] 

Naringenin AD-TNDCI rat model 
Reduction of stress oxidative and cognitive 

dysfunction 
[50] 

Epigallocatechin-3-
gallate 

Alzheimer transgenic mice Reduction of Aβ generation [51] 

Aβ-induced AD rats 
Improvement of psychomotor coordination 

index and spatial Y-maze alternation 
[52] 

APPsw Tg AD mice 
Reduction of Aβ deposition and plaques, 

improvement of tau pathology and 
behavioral deficit 

[53] 

human SH-SY5Y neuroblastoma cell 
line 

Iron chelating activity, increase of mRNA 
 and protein levels of transferrin receptor, 

reduction of immature and full-length 
cellular holo-APP forms 

[54] 

Hesperidin 
Three-month-old APPswe/PS1dE9 

transgenic mice 

To have antioxidant effect, increase of 
mitochondrial complex I–IV enzymes 

activities and GSK-3β phosphorylation, 
enhancement of locomotor activity, 
reduction of cognitive dysfunction 

[55] 

Gallic acid Aβ-induced AD rats 
Improvement of hippocampal long-term 

potentiation and histological damages 
[56] 

AMPK: 5' AMP-activated protein kinase; AD-TNDCI: Alzheimer’s disease-type neurodegeneration with cognitive 
impairment; APP: Amyloid precursor protein; GSK-3β: Glycogen synthase kinase-3β 
Table 1: Effects of natural product in treatment of AD. 
 

Mechanism of Neuronal Cell Death in AD 

     Oxidative stress is the imbalance between pro oxidants 
and antioxidant factors that lead to accumulation of 
reactive oxygen species (ROS) [36]. This reactive species 

can lead to cell membrane lipid destruction, DNA cleavage, 
oxidation of proteins, and finally apoptosis [57]. Apoptosis 
is the predominant type of neuronal cell loss observed in 
AD [58]. Apoptotic cell death signaling can be divided into 
two major pathways; intrinsic (or mitochondrial) pathway 
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and extrinsic (or death receptor- mediated) pathways [59]. 
Apoptosis in mammalian cells regulates by a large number 
of proteins (Figure 1). In the intrinsic pathway, stimuli acts 
directly or indirectly on mitochondria and affects mainly 
Bcl-2 family and caspase [60]. Bcl2 superfamily consists of 
both pro-apoptotic (such as Bax, Bad, and Bak) and anti-
apoptotic (such as Bcl-2 and Bcl-xL) proteins. Decrease of 
anti-apoptotic protein and/or increase of pro-apoptotic 
factors results in disruption of mitochondria membrane 
potential, swelling of mitochondrial membrane, and 
release of cytochrome c to cytoplasm [61]. In cytoplasm, 
cytochrome c forms a multi-molecular holoenzyme 
complex with apoptotic protease activating factor 1 
(Apaf1), which cleaves procaspase-9 to its active form. 
Active caspase-9 then cleaves procaspase-3 and initiates 
the caspase cascades [62]. Extrinsic pathway of apoptosis 
involves the interaction of death signals, for example 
tumor necrosis factor (TNF-α) with death receptors, such 
as tumor necrosis factor receptors 1 (TNFR1), and 
formation of death-inducible signaling complex that 
activates caspase-8, which could also cleave procaspase-3 
to its active form [63]. Activated caspase-3, in both 
intrinsic and extrinsic pathways, activates poly (ADP-
ribose) polymerase (PARP) and other death substrates, 
such as APP, PS1 and PS2 proteins [64]. Stress conditions 
also affect the folding of proteins in endoplasmic reticulum 
(ER) lumen [65]. Three main ER pathways involved in 
folding include inositol-requiring enzyme 1 (IRE1), protein 
kinase RNA-like ER kinase (PERK), and activating 
transcription factor 6 (ATF6) [66]. ER stress response is 
mediated via three different signaling pathways: unfold 
protein response (UPR), which increases the level of 
chaperones; ER-associated protein degradation (ERAD) 
that degrades the misfolded proteins by activating 
ubiquitin/proteosomal pathway; and ER overload 
response (EOR) which is induced when ER is overload with 
proteins that are not transported to Golgi complex [67]. 
Under ER stress conditions, glucose-regulated protein 78 
(GRP78) which is an ER chaperone, dissociates from ATF6, 
PERK, and IRE1 and binds to malfolded proteins to 
facilitate their folding [68]. C/EBP homologous protein 
(CHOP) together with caspase-12, which are ER resident 
caspases, and calpain mediate ER stress-induced apoptosis 
by affecting executioner caspases, such as caspase-3 
[69,70]. While accumulation of unfolded proteins in ER 
provokes these pathways, accumulation of misfolded 
proteins in the cytosol leads to increased expression of 
heat shock proteins (HSPs) which act as molecular 
chaperons [71]. HSPs expression is induced by several 
stimuli including heat shock, ischemia damage, infection, 
and heavy metals [72]. HSPs may protect cells by 
mechanisms unrelated to their chaperone function 
through inhibition of apoptosis [73]. Stress-inducible 
Hsp70 is a prominent cytoprotective factor that protects 

the sensitive sites of the target proteins and thereby acts 
as a cytoplasmic “antioxidant” [74]. In addition to 
mitochondria- and ER-resident proteins, many stress-
sensing transcription factors are also activated in AD. NF-
E2 related factor 2 (Nrf2) is a central transcription factor 
involved in transcriptional activation of phase II 
detoxifying enzymes via antioxidant response element 
(ARE) [75]. Release of Nrf2 from its cytoplasmic inhibitor, 
Kelch-like ECH-associated protein 1 (Keap1), leads to 
activation of Nrf2 and its translocation to nucleus, where it 
activates transcription of ARE-driven genes, such as Hsp32 
and γ-glutamylcysteine synthetase (γ-GCS) [76]. Nuclear 
factor-ᵏB (NF-ᵏB) is another transcription factor that is 
activated by TNF-α, interleukin 1β (IL-1β) and 
lipopolysaccharide (LPS) (canonical pathway) or by 
LTα/β, CD40 ligand (non-canonical pathway) [77]. In 
unstimulated cells, NF-ᵏB is sequestered inactive in 
cytoplasm by binding to IᵏBs (Inhibitor of ᵏB). Activation of 
the NF-ᵏB involves the phosphorylation of two serine 
residues located on IᵏB regulatory domain by IᵏB kinase 
(IKK) and release of NF- ᵏB [78]. In nucleus, NF-ᵏB induces 
production of different mediators, like nitric oxide (NO), 
and regulates a number of inflammation- and oxidative 
stress-related genes, such as cyclooxygenase 2 (COX-2), 
superoxide dismutase (SOD), glutamate receptors, growth 
factors (brain-derived neurotrophic factor (BDNF) and 
nerve growth factor(NGF)), and cytokines (TNF-α and 
TNFR) [79,80]. NF-ᵏB signaling is inhibited by peroxisome 
proliferator-activated receptor γ (PPARγ), a transcription 
factor of the nuclear hormone receptor superfamily [81]. 
PPARγ agonists attenuate effectively oxidative stress, 
inflammation and apoptosis in the central nervous system 
[82]. Mitogen-activated protein kinase (MAPK) cascades 
are other major signaling pathways involved in cell 
proliferation, differentiation and adaptation [83]. The p38 
MAPK signaling has been widely accepted as a cascade 
contributing to neuroinflammation, excitotoxicity, synaptic 
plasticity and tau phosphorylation [84]. Inhibitors of ERK 
and p38 MAPK improve spatial learning and memory 
impairment in Aβ- injected rats by increasing 
phosphorylated cAMP-response element binding protein 
(CREB) level [85]. JNK protein is a stress activated protein 
kinase with several targets including Bcl family members 
and microtubule associated proteins, such as tau [86]. 
Another important signaling pathway involved in AD is 
Wnt pathway. Wnt signaling plays an important role in 
normal neural development and maintenance of neuronal 
homeostasis, synaptic plasticity, axonogenesis and 
establishment of brain polarity [87]. Activation of the Wnt 
pathway attenuates cytosolic glycogen synthase kinase 3β 
(GSK-3β) activity via protein kinase C (PKC) enzyme, 
thereby prevents phosphorylation and degradation of β- 
catenin and increases its nuclear translocation [88]. In 
nucleus, β-catenin interacts with TCF/LEF family 
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transcription factors to promote specific gene expression 
[89]. These gene products are important in determining 
cell’s fate during normal development and in maintaining 
homeostasis [90]. Several studies have shown that PS-1 
protein could form high molecular weight complexes with 
GSK-3β and β- catenin protein [91]. It has been suggested 
that PS-1 inherited mutations may affect the levels, 
trafficking or the phosphorylation state of cytosolic β-
catenin [92] (Figure 2). 
 

 

 

Figure 1: Mechanism of apoptotic pathways and ER 
stress. 

 
 

 

Figure 2: Role of different factors in pathology of AD. 

 
 
 

Role of Natural Product to Treat AD 
     In a study, it has been reported that treatment of 
drosophila with AD pathogenesis such as reduced lifespan, 
impaired locomotive ability, lack of memory and learning 
with quercetin could diminish problems induced by Aβ 
accumulation by expression of genes related to cell cycle 
and DNA replication, which inhibited their expression by 
Aβ accumulation [93]. In order to evaluation of quercetin 
neuroprotective effect against Alzheimer's disease, it was 
injected to 3xTg-AD mice. The results showed that it leads 
to reduction of extracellular β-amyloidosis and tauopathy 
in hippocampus and amygdale. In addition, reduction of 
astrogliosis and microgliosis were observed. It has also a 
obvious effect in reduction of paired helical filament (PHF), 
β-amyloid (βA) 1–40 and βA 1–42 levels and BACE1-
mediated cleavage of APP (into CTFβ). These effects 
resulted in improvement of learning ability and spatial 
memory [37]. Experiment about abrogation of Amyloid-β 
(Aβ)-induced mitochondrial dysfunction by quercetin was 
revealed that it has potential effect in reduction of learning 
and memory deficits as well as senile plaques. 
Mitochondrial dysfunction improved through restoration 
of mitochondrial membrane potential and ATP level, 
reduction of reactive oxygen species. Treatment with 
quercetin led to increase of AMP-activated protein kinase 
(AMPK) activity [38]. Study on quercetin effect (as long-
term intake) on memory recall in aged wild-type mice was 
showed that quercetin has prominent effect in recovery of 
memory. Interestingly, when AD patients, who were in 
early-stage of Alzheimer, were treated by Quergold, a new 
cultivar of hybrid onion as a quercetin-rich source, it led to 
improvement of memory recall [39]. According to study 
performed by George, et al. 2013 treatment with 
cinnamaldehyde and epicatechin lead to inhibition of tau 
aggregation by interaction with two cysteine residues in 
tau. In addition, cinnamaldehyde and its oxidized form, 
epicatechin, protect tau from oxidation through reduction 
of ROS and hydrogen peroxide. It had also inhibitory effect 
against formation of high molecular weight species 
affecting in stimulation of tangle formation [40]. 
Administration of ellagic acid to beta amyloid-induced-
Alzheimer rats reduced symptoms of Alzheimer disease so 
that it could improve acetylcholinesterase reactivation in 
dorsal hippocampus [41]. Study on protective effect of 
caffeic acid against AD mouse model induced by Aβ25-35 
was revealed that this compound had promising effect due 
to improvement of cognitive deficit as well as reduction of 
lipid peroxidation and nitric oxide formation in brain [42]. 
In another study, it has been confirmed that caffeic acid 
leads to recovery of learning problems and enhancement  
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of cognitive function. In addition, biochemical evaluations 
were revealed reduction of acetylcholinesterase activity 
and nitrite generation, expression of nuclear factor-κB-p65 
protein and caspase-3 activity after administration of 
caffeic acid. Interestingly, it regulated p53 protein 
expression and its phosphorylated form rats with AD. 
Finally, these findings were showed that it can be a 
promising compound to treat Alzheimer disease [43]. 
Given that, curcumin has high affinity to bind iron and 
copper thus it can reduce stress oxidative in brain and 
ultimately inhibit Aβ toxicity and inflammation induced by 
NF-κB [44]. Study on Alzheimer transgenic APPSw mouse 
model was showed that treatment with curcumin has anti-
Alzheimer effects in this animal model so that it had anti-
oxidative and anti-inflammatory effects by reduction of 
oxidized proteins and elevated interleukin-1β levels in 
brain. In addition, its low dose led to reduction of GFAP (an 
astrocytic marker), insoluble and soluble Aβ as well as 
plaques. Low dose of curcumin also inhibited microgliosis 
[45]. Experiment on APPswe/PS1dE9 mice treated by 
curcumin was revealed that curcumin reduces senile 
plaques in the brain that indicated potent disaggregation 
effect and in addition it had protective effect against 
dystrophic dendrites by improvement of abnormal 
curvature and dystrophy size [46]. Administration of soy 
isoflavones to rats with ovariectomized-induced 
Alzheimer's disease leads to obtain promising findings 
about effects of soy isoflavones against Alzheimer disease 
because it resulted in improvement of spatial learning and 
memory [47]. In addition, it has been reported that d-
galactose (DG)-induced aging leads to induction of stress 
oxidative and apoptosis in brain by increase of 
thiobarbituric acid-reactive substances and soluble 
extracellular receptors for advanced glycation end 
products in serum and brain. Moreover, increase of Bax 
expression, caspase-3 protein activity, Aβ, presenilin-1 and 
β-site amyloid precursor protein cleaving enzyme-1 in 
brain C57BL/6J mice were observed. While, treatment 
with soy isoflavones normalized these complications and 
enhanced problems associated with Alzheimer’s disease 
[48]. Study on role of genistein in treatment of Alzheimer 
disease showed that it diminishes changes occurred during 
induction of Alzheimer by Aβ(1–40)-injection in rats such as 
increase of MDA and nitrite levels, reduction of SOD 
activity that led to improvement of cognitive dysfunction 
[49]. In another study, it has been reported that naringenin 
results in inhibition of stress oxidative through reduction 
of 4-hydroxynonenal, malonaldehyde, thiobarbituric 
reactive substances, hydrogen peroxide, protein carbonyl, 
and increment of glutathione. In addition, it led to 
normalization of enzymes related to antioxidant defense 
such as glutathione peroxidase, glutathione reductase, 
glutathione-S-transferase, superoxide dismutase, catalase 
and Na+/K+-ATPase activity in the hippocampus of rats 

with Alzheimer disease induced by 
intracerebroventricular-streptozotocin. In addition, 
determination of choline acetyltransferase positive neuron 
showed that this compound inhibits its loss. Interestingly, 
dysfunction in spatial learning and memory improved after 
treatment with naringenin [50]. Epigallocatechin-3-gallate 
is a natural compound that can be a promising agent to 
treat Alzheimer. Using two Alzheimer transgenic mice 
include murine neuron-like cells (N2a) transfected with 
the human “Swedish” mutant amyloid precursor protein 
(APP) and in primary neurons derived from Swedish 
mutant APP-over expressing, mice (Tg APPsw line 2576) 
were confirmed that epigallocatechin-3-gallate leads to 
reduction of Aβ generation. This finding was obtained by 
increase of cleavage in α-C-terminal fragment of APP as 
well as increment of N-terminal APP cleavage product and 
soluble APP-α due to increase of α-secretase activity and 
hydrolysis of tumor necrosis factor α-converting enzyme. 
In addition, epigallocatechin-3-gallate reduced Aβ level 
and plaques related to promotion of nonamyloidogenic α-
secretase proteolytic pathway after its administration in 
Tg APPsw transgenic mice [51]. In a study, in order to 
modeling of cognitive dysfunction during Alzheimer 
disease, β-amyloid was injected into rat brain and then 
treatment with epigallocatechin-3-gallate showed that 
reduction of cognitive deficit occur through improvement 
of psychomotor coordination (PMC) index and spatial Y-
maze alternation at the end of study [52]. In another 
experiment, it has been showed that oral administration of 
epigallocatechin-3-gallate to “Swedish” mutant amyloid 
precursor protein over expressing (APPsw, Tg) mice leads 
to reduction of Aβ deposition (Aβ1–40 and 1–42 soluble and 
insoluble forms) and plaques in cingulate cortex, 
hippocampus, and entorhinal cortex. Evaluation of tau 
pathology was showed that it reduced sarkosyl-soluble 
phosphorylated tau isoforms. In addition, in behavioral 
study improvement of cognitive impairment was 
confirmed [53]. Analysis of role of epigallocatechin-3-
gallate on regulation of iron metabolism-related proteins 
APP and transferrin receptor in human SH-SY5Y 
neuroblastoma cells was confirmed that it has prominent 
iron-chelating activity and increases mRNA and protein 
levels of transferrin receptor. Moreover, reduction in 
immature and full-length cellular holo-APP forms was 
observed [54]. Wang, et al. 2014 reported that treatment 
with hesperidin normalize mitochondria dysfunction and 
oxidative stress in three-month-old APPswe/PS1dE9 
transgenic mice as an animal model of Alzheimer disease. 
In this study was showed that hesperidin has potential 
effect in increase of anti-oxidative defense and 
mitochondrial complex I–IV enzymes activities as well as 
glycogen synthase kinase-3β (GSK-3β) phosphorylation. In 
addition, an obvious improvement in learning and memory 
deficits and locomotor activity was showed. However, 
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hesperidin was unable to reduce Aβ deposition [55]. 
According to study on effect of gallic acid in treatment of 
Alzheimer disease, it has been showed that this compound 
leads to improvement of hippocampal long-term 
potentiation and histological changes subsequently its 
administration to rats with Alzheimer disease induced by 
Aβ injection [56]. 
 

Conclusions 

     As shown in figure 1 and 2, increase of ROS level 
triggers neurodegeneration spatially in postsynaptic 
regions so that there are the collections of events to do this 
possess. Given that above studies, we found that treatment 
with compounds obtained from plants are useful in 
reduction of complications of Alzheimer disease. In fact, 
these compounds were affective in reduction of stress 
oxidative and inflammation. They also had potential effect 
in reduction of Aβ toxicity by abrogation of Aβ generation 
and reduction of immature and full-length cellular holo-
APP forms. Other their benefic effects were senile plaque 
reduction, inhibition of tau abnormal from, binding to iron 
and copper and reduction of their toxicity, dystrophic 
dendrites reduction, AMPK activation, DNA replication, up-
regulation of genes related to cell cycle, regulation 
expression and phosphorylation of p53 increase of GSK-3β 
phosphorylation. These effects led to improvement of 
cognitive dysfunction and histological damages. Finally, we 
suggest that have to more focusing to natural product in 
order to treatment of Alzheimer disease and inhibition of 
its progression by to do further studies.  
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