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Abstract  

Diabetes mellitus [DM] is a chronic metabolic disorder with its associated complications. Despite the plethora of available 

anti diabetic drugs to treat DM search continues to discover newer drugs. Proton pump inhibitors [PPIs] are the drugs 

which have been tested by researchers in animal models and in clinical set up to treat DM. They appeared to be promising 

drugs to reduce hyperglycemia. They can be used as supportive drugs along with the primary anti diabetic drugs. PPIs 

enhance rebound gastrin release, increase beta cell mass and insulin release. They are not hypoglycemic drugs. They 

reduce blood sugar by increase in gastrin and GLP-1 levels, decrease in ghrelin levels, reduced appetite, delayed gastric 

emptying and enhanced satiety through action on CNS.PPIs are the inhibitors of organic cation transporters (OCTs) for 

which metformin is the substrate and hence the plasma levels of metformin are increased. The potential and safety of 

PPIs in treatment of DM should be evaluated by long term clinical trials.  
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Introduction 

Diabetes mellitus [DM] is a fast growing noninfectious 
disease which affects the population of both developing 
and developed countries. It is estimated that by 2025, 
about 380 million people will be affected by type 2 DM [1]. 
Type 2 DM is more common which is mainly treated by 

oral anti diabetic drugs [2]. Type 2 DM is characterized by 
progressive pancreatic beta cell failure and peripheral 
insulin resistance in muscles and fat. It also comprises 
accelerated lipolysis, incretion resistance or deficiency, 
increased renal glucose absorption and hyperglycemia and 
brain insulin resistance. In Type 1 diabetes mellitus, 
hyperglycemia is due to absolute or relative deficiency of 
insulin release from pancreatic beta cells [3]. Hence along 
with other targets for treatment of diabetes mellitus, beta 
cell regeneration is of utmost importance. Proton pump 
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inhibitors [PPIs] are the class of drugs which have been 
tried to achieve the target of beta cell regeneration and 
increase in beta cell mass. 

 
PPIs are the drugs used to treat acid peptic disease, 

gastro esophageal reflux disorders; NSAIDS induced 
gastric mucosal injury, H pylori infection and Zollinger 
Ellison syndrome [4]. Whenever PPIs are given for long 
term and along with the reduced acid secretion from 
stomach they enhance gastrin release as a rebound, 
feedback phenomenon. Increased acid secretion in 
response to protein meal is triggered by gastrin release 
which also secretes pepsin along with HCl in the gastric 
lumen [5]. 

 
 Gastrin is a peptide hormone secreted mainly by antral 

G cells in the form of biologically active gastrin 17 and 
gastrin 34 [6,7]. Factors which stimulate gastrin secretion 
are vagal stimulation, rise in intra gastric pH, distention of 
stomach, and the presence of food mainly protein in nature 
[8-12]. Small quantity of gastrin is synthesized by certain 
luminal stimuli and also by the presence of dietary protein 
and amino acids [12,13]. Gastrin stimulates gastric acid 
secretion from gastric parietal cells. Gastrin and 
cholecystokinin bind to gastrin and cholecystokinin B 
[CCK-B] receptors and promote gastric acid secretion [14-
16]. 

 
 Gastrin is proved to be islet cell growth factor similar 

to glucagon like polypeptide I [GLP-1] and has trophic 
effect on beta cell mass [17-19]. Gastrin acts as a growth 
factor and stimulates gastric cell proliferation [12,20]. It 
also promotes beta cell neogenesis in pancreatic ductal 
complex and enhances pancreatic beta cell replication 
considerably. This helps in the control of raised blood 
sugar level [21]. 

 
Gastrin receptor is a major receptor for gastrin and is 

expressed abundantly in the entero chromaffin cells of 
stomach [22]. Gastrin can be called as early incretion 
hormone as it gets released by oral glucose administration 
and stimulates the glucose related insulin secretion [23]. 
PPIs lower blood sugar by enhancing rebound gastrin 
secretion [24-26]. Based on negative feedback between 
PPIs and gastrin. PPIs have been tested by researchers to 
correlate their effect with the control of hyperglycemia in 
T2 DM [27-29]. 

 
The known factors which stimulate beta cells 

neogenesis from the pancreatic duct cells in vivo and vitro 
are epidermal growth factor (EGF), keratinocyte growth 
factor and transforming growth factor alpha (TGF Alfa), 
GLP-1, and gastrin [30-34]. When gastrin was combined 

with EGF, accelerated beta cell mass was observed in 
streptozotocin induced diabetic rats and alloxan induced 
diabetic mice which also controlled the hyperglycemia. 
Adult human islet beta cells from pancreatic duct cells 
when treated with combination of gastrin and EGF, 
together they increased functional beta cell mass [35,36]. 
Both play different roles in the proliferation and 
differentiation of beta cells. Gastrin induced the expression 
of transcription factor PDX-1 in the duct cells and helped in 
differentiation of pancreatic beta cells [19]. 

 
When gastrin was combined with GLP-1, increased beta 

cell mass was found in the diabetic immune deficient mice, 
in which human beta cells were implanted [37]. Gastrin is 
proved to be islet cell growth factor like GLP- I and has 
trophic effect on beta cell mass [17-19]. In animal studies, 
when gastrin was combined with GLP 1, accelerated beta 
cell growth and insulin secretion was observed [38]. GLP-1 
protects beta cells by reducing apoptosis and by enhancing 
exogenesis and proliferation. They stimulate ductal cells to 
transform in to islet cells and also stimulate beta cell 
regeneration within the islets [39]. 

 
When dipeptide peptidase 4 [DPP4] inhibitors were 

combined with PPIs, rate of restoration of normaglycaemia 
was almost double than by that of DPP4 inhibitors used 
alone in diabetic mice [40]. PPIs delay the gastric emptying 
for solids and the possible underlying mechanism for their 
delayed emptying could relate to the inhibition of peptic 
hydrolysis due to inhibited acid dependant peptic activity. 
Gastric emptying of liquids depends on volume and energy 
density of intra gastric contents. PPIs modify volume and 
energy density by reducing gastric acid secretion [41]. Like 
GLP-1, PPIs are found to slow gastric emptying and 
decrease post prandial hyperglycemia and fluctuations in 
blood sugar levels [41,42].  

 
Factors such as gastrointestinal hormones like glucose 

mimetic insulinotropic peptide (GIP), GLP-1, gastrin and 
cholecystokinin govern the beta cell turnover [17,39]. 
Suppressed or decreased gastric acidity acts as a trigger 
for gastrin release from antral G cells [43]. Gastrin is 
known to regulate beta cell function [17,25,26,44]. Like 
GLP1, Gastrin also promote beta cell neogenesis, 
proliferation, differentiation and increase the mass and 
eventually reduce blood sugar by improved insulin release 
[17,36]. 

 
 PPIs are found to improve parameters of beta cell 

function such as HOMA-B, BSL, HbA1c, fasting insulin, 
fasting pro insulin and C peptide levels in the normal and 
T2DM patients. Pantoprazole was found to improve beta 
cell function and control hyperglycemia in DM. 
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Pantoprazole therapy for 12 weeks improved beta cell 
function by 16.2% in diabetic group and also there was 
rise in levels of pro insulin, insulin and C peptide and 
decrease in HBA1c levels [45]. Various other studies had 
similar observations [25, 26,44]. PPIs therapy increased C 
peptide which is a known marker of endogenous insulin 
release. 

 
PPIs could lower blood sugar by enhancing rebound 

gastrin secretion [17,25,26,44]. PPIs increase gastrin levels 
by negative feedback mechanism and stimulate beta cell 
neogenesis, proliferation and enhance insulin release [46-
52]. Administration of omeprazole 40 mg daily in healthy 

men increased the antral gastrin content [53]. In animal 
models of type 2 DM, PPIs improved glycemic control as a 
result of increased gastrin levels and beta cell mass [54]. 
Clinical studies also demonstrated that PPIs significantly 
improved glycemic control in type 2 DM patients [26-28, 
29,44,55,56]. But some studies did not show improvement 
in glycemic control [57,58]. PPIs decreased HbA1c levels 
significantly in type 2 DM patients who had initial high 
HbA1c and blood sugar levels [29]. As against no 
significant change in these parameters was observed in 
those diabetic patients who had reasonably good control of 
HbA1c and blood sugar levels during the time of study 
[57,58]. 

 

 

 

Figure 1: Effect of proton pump inhibitors on blood sugar levels – possible mechanisms. 
 

 
It is possible that gastrin enhances insulin secretion by 

directly stimulating pancreatic beta cells other than 
increasing beta cell mass whose increase is mainly 
observed during pancreatic remodeling. Protein rich meal 
without being glucose rich increases both circulating 
gastrin and insulin levels which may be without increasing 
beta cell mass. This also explains the effect of PPIs on 
glycemic control which is mediated through gastrin, 
directly stimulating beta cells and increasing insulin 
release [7]. 

 
Interaction between ghrelin and gastrin is known. 

Ghrelin plays an important role in appetite regulation and 
energy homeostasis. Ghrelin has negative correlation with 

gastrin as observed in human being. Increased gastrin 
levels suppress ghrelin release, reduces appetite which 
helps to improve glycemic control [59]. 

 
Possible effect of gastrin on central nervous system 

needs consideration. Food intake was found to be 
decreased after intra cebroventricular injection of gastrin 
[60]. Diffusion of gastrin in the brain through blood brain 
barrier [BBB] has got limitations [61]. But it can be 
possible due to the lack of BBB in circum ventricular 
organs. The peptide or peptide fragments enter in the 
brain [62].  Gastrin administered intravenously was found 
to activate neurons in the several parts of the brain [63]. It 
was observed that gastrin stimulated neurons of area 
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postrema which have CCK-B receptors and project to the 
nucleus tractus solitaris [NTS] [64]. In mouse NTS-proopio 
melano cortin neurons in the brain stem govern satiety. 
Hence it is possible that PPIs induced increased gastrin 
levels inhibit appetite through their action on central 
nervous system, possibly gastrin acting via vagal nerve on 
the brain stem [65]. 

 
Recently it was found that gastrin stimulated L cells in 

the intestine and enhanced GLP-1 secretions. This also 
contributes for glucose lowering effect of gastrin and 
PPIs.GLP-1 enhances insulin release, reduces glucagon 
secretion, reduces gastric emptying and enhances satiety 
[66]. 

 
Metformin is the time tested drug for last 60yrs in the 

treatment of DM. Transport of metformin in to the cell is 
governed by organic cation transporters [OCT] 1, 2 and 3 
which are expressed specifically in organs like liver, 
muscles and kidney. Omeprazole, rabeprazole, 
pantoprazole, and lansoprazole are the potent OCT 
inhibitors. These PPIs inhibited metformin uptake in the 
concentration dependent manner by OCTs. PPIs are not 
the substrates for OCTs. Metformin does not undergo 
hepatic metabolism. Hence drug interaction by inhibition 
of OCTs is important. All these PPIs inhibited metformin 
uptake transport by inhibiting all 3 OCT proteins [67]. 

 
PPIs are inhibitors of OCTs. Metformin forms a 

substrate for OCTs. PPI can affect plasma levels of 
metformin. Studies done with omeprazole and 
pantaprazole to observe their effect on metformin 
pharmacokinetics revealed that these PPIs increased the 
plasma concentration of metformin. Metformin given alone 
had its lesser plasma concentration level than when 
combined with PPIs. Thus PPIs increase plasma metformin 
levels [68]. 

 
Lansoprazole increased mean maximum plasma 

concentration of metformin and area under plasma 
concentration time curve. It also prolonged metformin 
elimination half from 3.9 to 4.5 hours and also decreased 
its renal clearance by 13% [69]. 

 
Metformin when was co-administered with 

rabeprazole, its plasma concentration was increased by 
18.6% and area under curve by 14.5%.Like other PPIs rabe 
prazole can strongly inhibit the transporting ability of 
OCTs. It was observed that rabeprazole can strongly 
inhibit MATE 1 mediated metformin transport in vitro. 
MATE 1 and OCT 2 are expressed on apical and basal layer 
of renal tubules abundantly and are responsible for renal 
excretion of metformin. The change in the 

pharmacokinetics of metformin can be explained on the 
basis of its decreased excretion by rabeprazole [70]. 

 
Hence caution needs to be observed while co 

administering metformin with PPIs as this might reduce 
blood sugar more. It is known that metformin may 
produce gastritis which needs the co administration of 
PPIs to control this. One possibility needs to be considered 
while prescribing PPIs in cases of DM with gastro oeso 
phageal reflux disorders [GERD] which has a common 
association in DM [71,72]. PPIs by relieving clinical 
symptoms of GERD can improve appetite despite the 
increased gastrin and decreased ghrelin levels and hence 
can derange glucose control in patients of DM. It is also 
reported that PPIs can induce dysbiosis, which is 
connected with metabolic syndrome [73]. 

 
PPIs through gastrin mechanism share the effects of 

incretin based therapies like glucoregulation, 
improvement in beta cell mass and function, slowing of 
gastric emptying, increase in satiety without weight gain. 
By inhibiting ghrelin release as a result of increased 
gastrin levels and through action on central nervous 
system PPIs help in reducing appetite. They do not 
produce hypoglycemia their glucose lowering effect is 
somewhat less than that by DPP 4 inhibitors and HbA1c 
reduction is in the range of 0.5-l% [74]. 

 
PPIs are considered to be safe and effective but like 

other drugs they also are not devoid of adverse drug 
reactions [ADRs]. These drugs given for long term can 
invite ADRs like hypo/achlorhydria, nutritional 
deficiencies of Vit B 12, calcium, magnesium and iron, 
acute interstitial nephritis, dementia, osteoporosis and 
fractures, enteric infections like clostridium difficile, 
pneumonias in ICU settings and increased incidence of 
myocardial ischemia. So monitoring of ADRs is needed 
while using these drugs for long term [75]. 

 
Thus PPIs can be considered as potential supportive 

therapy for DM mainly type2. Long term safety of these 
drugs needs to be confirmed by conducting clinical trials 
for prolonged duration. This will definitely encourage the 
use of PPIs in DM. 
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