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Abstract 

Insect pests belonging to Lepidopteran order species are amongst the most damaging pests of food and fiber crops 

globally. Lepidopteran pests are often managed imprudently by spraying crops with large amounts of broad-spectrum 

and often persistent insecticides. In view of the increased occurrence of insecticidal resistance, and their negative impacts 

on the environment and ecosystems, the need for biorational environment friendly control tactics and eco-compatible 

Integrated Pest Management (IPM) strategy is becoming imperative and crucial. Both the sterile insect technique (SIT), 

and its refinement, Inherited (F1) Sterility (IS) technique offer a great potential as additional control tactics for 

integration with other control methods in area-wide IPM approaches against the lepidopteran pests. SIT/IS can only be 

applied successfully when the released sterile insects effectively compete with their wild counterparts for mating with 

wild females. There are a number of programmes where the SIT/IS has been used efficiently against key lepidopteran 

pests, and there is a great potential for further improvement and expansion of the SIT/IS technology to target other 

economically important lepidopteran pests. Sterile insect programmes (SIT/IS) as a parabiological control may be 

compatible with other biorational methods of control (viz., mating disruption, use of parasitoids, pathogens and 

predators, biorational molecules such as hormone mimics/agonists/antagonists, inhibitors for sperm activity, 

pheromone blockers, metabolic inhibitors, physiological disruptors, etc.) that may fetch enhanced or synergistic potential 

towards area-wide IPM against the lepidopteran pests, provided the employment of different biorational tactics is well 

orchestrated with their mode of action and targeted ontogenic stage of the pests. 
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Insect Growth Regulators; SNPs: Silica Nanoparticles; 
IAEA: International Atomic Energy Agency. 
 

Introduction 

Earlier (mid twentieth century) the insect pest control 
was mostly based on broad-spectrum conventional 
insecticides such as organochlorines, organophosphates, 
carbamates and pyrethroid; however, the severe adverse 
effects of pesticides on the environment and human 
health, problems of crucial insecticidal resistance and 
stricter regulations and legislation resulted in reducing 
their use. Hence, to use ecologically sound alternatives 
and novel methods for pest control that may constitute 
‘biorational’ approaches are the vital tasks in pest control 
for the twenty-first century. 

 
The term ‘biorational’ (biological + rational) approach 

can be defined as the use of specific and selective strategy 
having biological perspective as the main basis. The 
biorational strategy may include biologically based 
technique, or chemicals that may mimic/antagonize the 
biomolecules, often with a unique mode of action, and 
that are compatible with natural enemies and the 
environment, with minimal effect on non-target 
organisms. Biorational pest control is based on an 
interactive mode of diversity of chemical, biological and 
physical approaches for controlling insect pests which 
results in minimum risk to human and the concerned 
environment.  

 
The economic thresholds and economic injury levels 

due to serious insect pests, realized within an ecological 
framework where chemical and biological controls could 
thrive together is probably the basis for the Integrated 
Pest Management (IPM) concept. However, during the last 
six decades, IPM’s overdependence on various broad-
spectrum insecticides led to a reproach that IPM was 
merely an integrated pesticide management [1]. Many 
countries are switching over from chemical based 
agriculture to green agriculture, where utilization of 
biorational methods (biopesticides, biological and 
parabiological control methods) have a great role to play 
[2-4]. 

 
Lepidopteran pest species are among the most 

damaging species of food and fibre crops around the 
world [5,6], especially designated as the worst insect pest 
threats faced by the tropical countries. These pests cause 
severe losses to agricultural crops in vast areas all over 
the world, and are the target of very significant quantities 
of broad-spectrum and persistent insecticides in 

developed and developing countries. These interventions 
are unsustainable in view of the economic impact of these 
pests. The rapid development of insecticide resistance in 
some Lepidopteran pests presents an additional threat to 
sustainability [7,8]. Furthermore, many effective 
pesticides are being removed from the market due to 
increased recognition of long-term human health and 
environmental harm caused by their wide-spread use.  

 
Using sterile insect technique (SIT) is an environment-

friendly control method that includes the use of sterile 
insects to control insects of the same species [9]. Another 
consideration in favour of mounting area-wide 
interventions using SIT against moth pests is the 
increasing commercial pressure to reduce residues on 
food. The use of SIT becomes more attractive compared to 
other alternatives if costs can be decreased. Further, the 
global increase in trade and travel has resulted in an 
increase in the rate of invasion of lepidopteran species, 
which threaten agricultural systems, markets, 
communities and biodiversity on a worldwide basis. In 
the current scenario, various tools of physiology, 
toxicology, and biotechnology can help us realize the role 
and potential of biorational strategies to be coupled with 
sterile insect programmes in an efficacious IPM module 
for the suppression of lepidopteran pests. 
 

Area-Wide Integrated Pest Management 
for Lepidopteran Pests 

Sterile Insect Technique (SIT) 

There is a broad international conceptual thinking that 
pest control operations against the lepidopteran pests 
should be based on the area-wide concept of integrated 
pest management (AW-IPM), and that SIT can be 
considered as a key tactic for creating pest free areas or 
for pest management within IPM programmes. It has been 
known since the 1950’s that insect pests can be controlled 
or eradicated through a “birth control” method based on 
genetic manipulation, known as autocidal pest control, or 
the sterile insect technique (SIT). It involves the 
colonization and mass-rearing of the target pest species, 
sterilization of the insects through the use of gamma 
radiation, and their release into the field on a sustained 
basis and in sufficient numbers to achieve appropriate 
sterile to wild insect over-flooding ratios. The sterile 
insects need to find and mate with fertile, virgin insects, 
rendering the wild population infertile. Due to the 
nonappearance of offspring, the natural pest population 
will suppress. The validity of this method has been 
demonstrated for many insect pests, including many 
moths, screwworms, tsetse, and fruit flies [10]. 
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The sterile insect technique is recognized among the 
first biological control methods designed for area-wide 
integrated pest management programs (AW-IPM) which 
integrate various control tactics against a pest population 
within a delimited geographical area. Other tactics include 
pesticide applications to reduce the size of initial 
populations and mating disruption or non-commercial 
wild host plant management to reduce the immigration of 
wild pest populations. Various strategies can be exercised 
when using SIT in AW-IPM, viz., pest eradication, 
suppression, containment or prevention [11]. Although 
SIT is considered an environmentally friendly method, 
undesired effects may occur; the pre-release population 
suppression is often based on insecticide applications that 
can be harmful to the environment, and SIT targeting 
native species can threaten biodiversity, although the 
direct and indirect effects of SIT on the environment are 
addressed by Nagel et al. [12] for both native and exotic 
pests. 
 

Modified SIT as F1 Sterility Technique - A 
Favorable Alternative to Manage Lepidopteran 
Pests 

Lepidopteran species are more resistant than other 
insect species against radiation; thereby a much higher 
dose of radiation is required to achieve sterility which 
may in turn reduce the insects’ competitiveness in the 
field against wild variety [13]. One way to overcome this 
drawback of SIT is to use ‘Inherited Sterility’ or F1 
sterility by releasing sub sterile male moths [14-17]. 
Therefore, a refinement of the SIT for Lepidoptera, known 
as ‘Inherited Sterility’ (IS), also known as ‘F1 sterility’ 
technique involves lowering the irradiation dose that 
moths receive (which would result in nearly completely 
sterile female moths and partially sterile male moths with 
almost fully sterile offspring) and consequently increasing 
their competitive fitness. Moths treated with a lower 
sterilizing dose live longer, are stronger fliers, and show 
better mating competitiveness than the moths treated 
with higher radiation doses. When inherited sterility 
systems are implemented into moth SIT programs, great 
improvements in programme efficiency can be obtained. 

 
The use of SIT/IS as a control tactic has many 

advantages, including species specificity and 
compatibility with the use of other area-wide control 
tactics such as mating disruption, biological control, 
cultural control methods and the use of bio-rational 
pesticides. It is an environmentally-friendly technology 
that can be used to address many of the world’s most 
difficult pest control problems. There are many successful 
examples of SIT against Lepidoptera. These include 

operational containment, suppression and eradication 
programmes against the codling moth (Canada) [18], pink 
boll worm (USA) [19], cactus moth, Cactoblastis cactorum 
(USA) [20], painted apple moth, Teia anartoides (New 
Zealand) [21], and false codling moth Thaumatotibia 
leucotreta (South Africa) [22,23]. In addition, there have 
been trial projects to demonstrate feasibility in the field; 
e.g. gypsy moth Lymantra dispar (L.), tobacco budworm 
Heliothes virescens (F.), corn earworm, oriental fruit moth, 
carob moth Ectomyelois ceratoniae, Asian corn borer 
Ostrinia furnacolis, the common cutworm Spodoptera 
litura, the spotted pod borer Maruca vitrata, etc [24,25]. 
 

Integrating SIT/ F1 Sterility and Biological 
Control 

Use of SIT programmes is not expected to conflict with 
other bio-control methods, such as mating disruption 
[26], augmentation of entomopathogens [27], host-plant 
resistance [28,29] and natural enemies [30]. 
 

Parasitoids 

The release of radio-sterilized or sub-sterile insects 
together with biological control agents has been known to 
have positive or sometimes synergistic effects for 
population suppression when applied simultaneously 
[31-33]. This synergy results from the sterile insects 
targeting on the adult stage, while the biological control 
agents usually target the immature stages wherein the 
reproduction of these bio-control agents on the F1 
offspring produced in the inherited sterility releases 
would further supplement the strategy. Laboratory and 
field trials with the cotton bollworm Helioverpa armigera, 
the corn earworm H. zea (Boddie), L. dispar, the potato 
tuber moth Phthorimaea operculella (Zeller), the 
diamondback moth Plutella xylostella, the tropical 
armyworm, Spodoptera litura (Fabr.), and the beet 
armyworm S. exigua (Hubner) indicated that sterile 
progeny from semi-sterile moths were acceptable as hosts 
for egg and larval parasitoids [34-38]. 

 
Experiments under large laboratory cage conditions 

showed that F1 sterility and releases of Trichogramma 
principium (Sugonyaev & Sorokina) were effective in 
suppressing P. operculella. Properly timed releases of T. 
principium together with moths irradiated at 250 Gy 
produced the greatest reduction in P. operculella F3 
progeny, demonstrating the synergistic effects of 
combining F1 sterility with egg parasitoids [35]. 
Investigations on interaction and compatibility of two 
biorational pest control tactics, (i) Trichogramma chilonis 
as bioconrol agent and (ii) radio-genetic ‘F1 sterility 
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technique’, against Spodoptera litura indicated that 
inundative releases of T. chilonis (egg parasitoid) with F1 
sterility technique could be efficacious using 100Gy and 
130Gy as sub-sterilizing doses in F1 sterility technique, 
whereas inoculative releases of parasitoid might be 
efficiently operated using only 100Gy in the radio-genetic 
pest suppression method [39]. 

 
Eggs of the false codling moth Thaumatotibia 

(Chryptophlebia) leucotreta (Meyrick) treated with 150-
200Gy were acceptable and suitable for development of 
the egg parasitoid Trichogrammatoidea cryptophlebiae 
Nagaraja. Field-cage evaluations in citrus orchards in 
South Africa revealed that releases of irradiated (150 and 
200 Gy) moths combined with releases of T. 
cryptophlebiae provided enhanced suppression of the 
false codling moth populations [40]. Integrating 
augmentative releases of Diglyphus isaea (Walker) as a 
parasitoid of a vegetable pest celery miner fly Liriomyza 
bryoniae (Kaltenbach), with sterile males of L. bryoniae 
was proposed for application in greenhouses [41,42]. 

 
Mass releases of the olive fruit fly parasitoid P. 

concolor, reared on irradiated Mediterranean fruit fly 
larvae, were coupled with mass trapping for an 
environmental friendly suppression method of olive fly 
populations [43]. 
 

Predators 

The interaction of the predator, Tupiocoris 
cucurbitaceous (Hemiptera: Miridae) was studied with 
biorational ‘Inherited sterility’ technique being employed 
against a serious pest Tuta absoluta. The predator, 
Tupiocoris cucurbitaceous fed on the F1 sterile eggs 
(produced by sub-sterilized males crossed with un-
irradiated females) significantly more than on normal 
eggs [44]. 

 
In South America, the exotic predator on weed Opuntia 

sp. is Cactoblastis cactorum, which being an exotic insect 
has gained the status of pest by devastating native plant 
species. F1 sterility technique was used for controlling 
Cactoblastis cactorum. The F1 larvae of sub sterilized C. 
cactorum was also observed to add to the predator’s feed 
while concurrently controlling the pest population by 
producing sterile progeny [45]. Therefore, the F1 sterile 
insects not only controlled the insect population on their 
own, but also acted as fodder for the predators in the field 
to help flourish their population while simultaneously 
acting synergistically together towards pest suppression. 
This additive effect of both the techniques can be 

achieved by simultaneous or consecutive incessant 
release of F1 progeny with the natural predators. 
 

Pathogens 

The usage of various species of entomopathogenic 
nematodes (EPNs) was complementary with F1 sterility 
technique against the pink bollworm, Pectinophora 
gossypiella, and the success of using both the techniques 
was dependent upon the foraging behavior of the 
nematode. The F1 larvae became more susceptible to 
nematodes as the radiation dosage in the male parent was 
increased. Further, the suitable EPN species (i.e., 
Steinernema carpocapsae) was used, and these nematodes 
were more likely to infect normal mobile larvae than the 
F1 sedentary larvae [46], that might contribute towards 
effective pest suppression. 

 
Efficacy of the entomopathogenic nematode (EPN), 

Steinernema glaseri, (Steiner) cultured in radio-sterilized 
host, was studied in relation to radiation-mediated F1 
sterility technique on a tropical lepidopteran pest, 
Spodoptera litura (Fabr) S glaseri, harvested from F1 
sterile larval hosts (progeny from 100 or 130 Gy treated 
male parents) retained a reasonably high degree of 
infectivity on normal and F1 sterile S. litura hosts (61-
83% of controls). Two promising operational modes of 
integrating S. glaseri EPNs with ‘F1 sterility’ to suppress S. 
litura populations (initial releases of EPNs to strongly 
suppress the pest density followed by use of F1 sterility 
versus simultaneous use of both techniques) were 
proposed for effective pest management [36]. 

 
The painted apple moth, Teia anartoides Walker 

(Lepidoptera: Lymantriidae), is an Australian plant 
defoliator, and an important pest in horticulture and 
forestry. An IPM program was implemented by 
integrating sequential applications of Foray 48 (Bacillus 
thuringiensis) along with release of sterile males and F1 
and F2 radio-sterile progenies, which resulted ultimately 
in official eradication of the pest from that area within 
two years [21]. 

 

Integrating SIT/ F1 Sterility and 
Pheromones 

Insects have a highly specialized and sensitive 
pheromone olfactory system, which is crucial to their 
survival. The lepidopterans use pheromones as sex 
attractants as an integral part of their mate-finding 
strategy. Using SIT/IS programmes is not expected to 
negatively encounter with other eco-sound control 
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methods, such as mating disruption using pheromones 
[26]. 

 
One of the appropriate methods is mating disruption 

using synthetic pheromones either implemented alone 
[47] or integrated with cultural practices [48], ‘attract and 
kill’ [49-52]. In 1992, an operational codling moth AW-
IPM programme (OKSIR programme – Okanagan-
Kootenay Sterile Insect Release Programme) released the 
sterile males in the Okanagan region of British Columbia, 
Canada to apple and pear orchards [53]. The programme 
integrated the use of insecticidal sprays, mating 
disruption and tree banding with the release of sterile 
moths [54], and the results of this programme were 
encouraging. There are various ways in which the 
pheromones and insect hormones can be utilized to 
manipulate the insect population under economic 
threshold. Pheromone traps can be used to capture the 
male moths by using female pheromones as baits. The 
codling moth, Cydia pomonella was kept under control by 
using pheromone traps using codlem one as bait [21]. 
Moreover, the bioassays to assess the responses of 
released irradiated males to the pheromone traps were 
indispensable to any SIT/F1 sterility programmes and 
crucial for monitoring irradiated moths throughout the 
target area [11,55].  

 
Light brown apple moth, Epiphyas postvittana is a leaf-

roller invading Australia, Europe and North America. An 
IPM program was developed to combine SIT with mating 
disruption strategy in 2007 [56]. A population model was 
developed in support of implementing the integration of 
mating disruption technique with Inherited Sterility (IS) 
instead of SIT for light brown apple moth [57,58]. The 
model concluded that IS at higher doses leads to almost 
complete eradication of pest population while at lower 
doses, there is a chance of formation of a self-sustaining 
population and thus combination of IS with other tactics 
is necessary. 

 
The SIT or F1 sterility programmes can only be 

successful when sterile moths of high biological quality 
are released [59]. Behavioral traits, such as dispersal, 
response to calling females, flight propensity and ability 
of the released male moths largely influence the success 
of the SIT in the field [59,60]. SIT in conjunction with 
other insect controls such as mating disruption could 
further reduce the frequency of insecticide use and 
residual concern [61]. SIT can be effectively implemented 
alongside other IPM methods including mating disruption 
and threshold-based pheromone trap sprays, etc. 
 

Prospective Biomolecules as Biorational 
Pesticides to Couple with SIT/F1 Sterility 
Programmes 

Plant Derived Products 

Plant terpenes such as limonoids from Meliaceae 
plants, flavonoids from Asteraceae, sesquiterpenes from 
Celastraceae, etc, are usually a good source of compounds 
for pest management, since they are eco-friendly and 
offer strong resistance to insect attack. The activity of 
some of these compounds has been associated with a 
mechanism involving inhibition of AChE. Ent-clerodanes 
from the aerial parts of Gutierrezia microcephala 
(Asteraceae) and b-dihydroagarofurans, isolated from 
Maytenus sp., exhibited insecticidal activity inhibiting 
growth, pupation and emergence on larvae of Spodoptera 
frugiperda [62]. The latter compounds were potent 
inhibitors of AChE (78-100% inhibition at 15 ppm) with 
the most potent toxic agent on adults [63]. Similar results 
were reported with insecticidal triterpenes isolated from 
Parthenium argentatum [64]. The most efficient natural 
substance with moult-inhibiting activity is azadirachtin, a 
tetranortriterpenoid plant (neem tree, Meliaceae) 
limonoid with ecdysteroid-like structure [65]. Its strong 
antifeedant, insect growth regulatory and reproductive 
effects are well documented, although its biochemical 
effects at the cellular level are still uncertain. 
Brassinosteroids represent the first true anti-
ecdysteroids investigated. They are a family of growth-
promoting hormones found in plants and have striking 
structural similarities with the ecdysteroids. The 
brassinosteroids compete with moulting hormones at the 
binding site of the hormone receptor which results in 
delayed moulting [66]. Two triterpenoids isolated from 
seeds of a cruciferous plant, cucurbitacins B and D, were 
found to be insect steroid hormone antagonists acting at 
the ecdysteroid receptor [67]. 
 

Biomolecules Acting as 
Mimics/Agonists/Antagonists to Hormones, 
Neuropetides and Pheromones 

In the search for safer biorational pest control 
molecules, i.e., more selective modes of action and 
reduced risks for non-target organisms and the 
environment, a considerable progress has been made 
with the development of natural and synthetic 
compounds capable of interfering with the processes of 
growth, development and metamorphosis of the target 
insects [68]. These chemicals are called insect growth 
regulators (IGR) or third-generation insecticides [69,70]. 
IGRs exert their insecticidal effects through their 
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influence on development, metamorphosis and 
reproduction of the target insects by disrupting the 
normal activity of the endocrine system, although their 
action is considerably slower than that of the synthetic 
chemical insecticides. Hence, the insect endocrine system 
can be considered as a potential and specific physiological 
target for pest control. New bio-rational approaches to 
the development of insect control agents have been 
revealed through the description of natural and synthetic 
compounds capable of interfering with the processes of 
development and reproduction of the target insects. 
These novel biorational insecticides that mimic the action 
of major insect growth and developmental hormone 
classes-the neurohormones (neuropeptides), the 
ecdysteroids and the juvenile hormones, could be 
systematically integrated with SIT/F1 sterility for 
efficacious lepidopteran pest control. Any interference in 
the homeostasis of these hormones with exogenous 
source of the hormones or with synthetic analogs (agonist 
or antagonist) would result in the disruption or abnormal 
course of development and reproduction of the target 
insect. Many processes in the insects are regulated by 
peptides originating from various parts of the nervous 
system. These processes include stimulation of moulting 
by initiating ecdysteroid biosynthesis, initiation of 
behavioral patterns associated with ecdysis and its 
timing, control of JH biosynthesis, water and ion balance, 
influence of contractions of visceral muscles and 
regulation of energy metabolism. A significant progress 
has been made in the characterization of these 
neuropeptides and their genes [71]. In addition to the 
peptides themselves, the mechanisms responsible for 
their synthesis, maturation, transport, secretion, binding, 
action, and inactivation offer several targets for the 
development of novel biorational insecticides. 
 

In insects, the prothoracic glands are the major source 
of ecdysteroids during larval development. The 
involvement of alternative sites of ecdysteroid production 
(ovary, testes, and abdominal integument) is limited to 
pupal and adult stages. Ecdysteroids are synthesized from 
cholesterol or phytosteroids in the diet, because the 
insects cannot synthesize the steroid nucleus. The final 
steps of ecdysone biosynthesis consist of a sequence of 
hydroxylations catalyzed by cytochrome P-450-
dependent hydroxylases. Several P-450 inhibitors could 
be promising bio-pesticides. Ketokonazole, another 
synthetic imidazole derivative, is known to inhibit the 
ecdysone 20-monooxygenase and was effective against 
adult locusts and crickets [72,73]. Such biorational 
molecules at lethal and sublethal concentartions need to 
be tested against the lepidopteran pests. 

 
The discovery of ecdysteroid agonists (RH-5849, RH-

5992-tebufenozide, RH-2485) has been very effective 
[74]. These molecules are ecdysteroid agonists belonging 
to bisacylhydrazine class, and act against a wide range of 
lepidopteran pests. All these non-steroidal ecdysone 
agonists manifest their effects via interaction with the 
EcR/USP receptor complex. The high degree of safety with 
respect to non-target organisms is particularly 
remarkable. Use of sublethal sterilizing doses of 
bisacylhydrazine ecdysone agonist insecticides (RH-5849 
and RH-5992-tebufenozide) interfered with male 
reproductive ability and showed the potential to 
adversely affect the population dynamics of S. litura, and 
to achieve population suppression of this serious pest 
[75]. 

 
Certain highly active compounds with less apparent 

similarity to JH (aromatic non-terpenoidal JH analogs) 
like fenoxycarb, pyriproxifen and diofenolan, have been 
synthesized [76]. Different formulations of fenoxycarb 
have been used for the control of a number of 
lepidopteran pests. The juvenoids have some merits, like 
their short residual effects in the field and the few and 
short sensitive phases of the target insects [77]. However, 
since juvenoids act only on certain stages their 
application must be timed precisely, and due to their low 
field stability, it needs to be repeated several times. 
Hence, JH analogs are the most practical where immediate 
control is not desired. Several potential inhibitors of JH 
biosynthesis, viz., fluoromevalonate, mevinolin and 
fluvastatin have been investigated [78]. An inhibitor of JH 
biosynthesis, isolated from the entomopathogenic fungus 
Penicillium brevicompactum, was observed to inhibit the 
final methylation/epoxidation steps of JH hormone 
biosynthesis [79]. 

 
Another tactic can be to produce pheromone and 

hormone antagonists. Many crucial genes and subsequent 
peptides like PBAN (pheromone biosynthesis activating 
neuropeptides), leucokinins, juvenile hormones have 
been identified which play a role in pheromone and 
hormone synthesis, and development of their inhibitors 
will positively help in pest management strategies [21]. 
Once detected by antennae, the pheromone is degraded 
by pheromone-degrading enzymes, which include 
monooxygenases, aldehyde oxidases, aldehyde 
dehydrogenases, esterases and glutathione-S-
transferases. Use of inhibitors of the catabolism of the 
odorant molecules, as disruptants of pheromone 
reception, has been proposed as a potential approach for 
insect control [80]. Peptides released by specialized 
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neurosecretory cells of the insect's central nervous 
system (neuropeptides) may function as 
neurotransmitters, neuromodulators and as hormones 
and have been called the 'master regulators' of 
development, behavior, metabolism, homeostasis and 
reproduction. Several novel insect neuropeptides and 
numerous peptide analogs have been synthesized, a large 
number of gene sequences have been determined and 
neuropeptides genes have been expressed in vector 
systems. It is impractical to consider neuropeptides 
themselves as pest control agents since their physico-
chemical properties would render them susceptible to 
degradation under field conditions and to be digested 
after feeding and their polarity would make their uptake 
through the cuticle most difficult. But it is worth 
considering neuropeptides as potential leads to control 
agents, as their structural information included within the 
molecules, might provide clues to the manner in which 
the active neuropeptides could be synthesized, and 
processed to act upon a target tissue, and degraded [81]. 
The disruption of any step leading to biosynthesis of 
neuropeptides, their modification during storage, and 
their release into the hemolymph as well as their 
interaction with the target cell membrane-bound 
receptors may offer multiple modes of action for a novel 
neuropeptides based insect control strategy (fourth 
generation insecticides). 

 

Biomolecules Disrupting Sperm Activation 

Lepidoptera males have concomitantly nucleate 
(eupyrene) and anucleate (apyrene) spermatozoa. Both 
kinds of spermatozoa reach the spermatheca of 
inseminated females but only the eupyrene ones have the 
capacity to fertilize the eggs [82]. The functions of the 
apyrene spermatozoa are still uncertain. Physiologically, 
the highly motile apyrene sperm seem to act as micro 
stirring bars to facilitate the dissociation of eupyrene 
sperm bundles in spermatophores after copulation [83]. 
Eupyrene spermatogenesis is regular and highly sensitive 
to genetic and experimental manipulations while apyrene 
spermatogenesis is irregular and withstands these 
manipulations. Both kinds of spermatozoa are derived 
from the same kind of bipotential spermatocytes. After 
copulation, both sperm types migrate to the spermatheca, 
where the eupyrene sperm are stored until oviposition by 
the female. Many studies report that apyrene sperm 
represent the majority of sperm stored in the 
spermatheca [84-86]. Silberglied, et al. [87] proposed the 
cheap filler hypothesis, which states that, in polyandrous 
species; the numerous motile apyrene sperm in the 
spermatheca reduce the receptivity of the female to re-
mating. Activation of sperm motility involves structural 

and metabolic changes of the spermatozoa, or it involves 
chemical stimuli, which may lead to the initiation of 
motility. In the male silkworm, Bombyx mori L. 
(Lepidoptera: Bombycidae), the secretions of the glandula 
prostatica, which contain an Endopeptidase called 
initiator in, trigger a cascade of reactions in the apyrene 
sperm [88,89]. Sperm motility probably results from 
selective degradation of the glycoprotein by an Arg-C 
Endopeptidase, and then deposition of cAMP on the 
surface of the cell membrane or in the microslits [90]. 
Therefore, use of inhibitors for sperm motility in 
Lepidopteran insects might be a potential biorational 
mode of intercepting sperm dynamics and eventual 
reproductive disruption leading to pest suppression. 
 

Phenoloxidase Inhibitors 

Phenoloxidase (PO), the enzyme responsible for the 
biosynthesis of melanin, is considered as an important 
component of insects' immune system. The enzyme is not 
only involved in defense reactions but also in other 
physiologically important processes, such as 
sclerotization of the cuticle, an essential step for the 
survival of all insects [91]. Use of phenoloxidase 
inhibitors could act as a potent biorational insecticide 
targeting the various pre-imaginal stages undergoing 
metamorphosis in lepidopteran pest. 
 

Bio-Nanoparticles 

Nanoparticles in agriculture may serve as ‘magic 
bullets’, containing insecticides, fungicides, herbicides, 
chemicals, or genes, which can target particular plant 
parts or organisms to release their content. Nanocapsules 
can enable effective penetration of pesticides through 
cuticles and tissues, allowing slow and constant release of 
the active substances [92]. Nano-particles as biopesticides 
usually exhibit extra ordinary strength, more chemical 
reactivity and possess high electrical conductivity. 
Biological nanomaterials have a substantial role in new 
pesticidal designs. For instance, Silica nanoparticles 
(SNPs) could effectively kill early instars of Spodoptera 
litura [93]. Chandrashekharaiah, et al. [94] developed 
DNA-tagged nanogold, DNA-tagged CdS, nano-TiO2 and 
nano-Ag that showed a significant mortality of the 
immature stages of S. litura. 

Biorational Mode 

Most of the noxious chemical pesticides/biomolecules 
are either neuro-poisons or physiological disruptors, and 
a majority of these pesticides have anti-reproductive 
effects at sub-lethal doses that need to be exploited in 
IPM, before employing their lethal doses, which would (i) 
allow using lower doses of deadly chemicals, (ii) slow 
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down the rate of development of insecticidal resistance in 
insect pest, that would in turn lead to an ecologically 
sound approach for pest suppression. 
 

Conclusion 

The control of lepidopteran pests worldwide is 
achieved almost entirely through the use of synthetic 
insecticides. This dependence on insecticides has 
contributed to the development of insecticide resistance 
in many of the most serious pests. Development of 
alternative tactics to the unilateral use of insecticides is a 
major emphasis of most local, national and international 
research organizations concerned with lepidopteran pest 

control. Radio-genetic Inherited Sterility (IS), also 
referred to as F1 sterility, would be an appropriate 
alternative to suppress Lepidopteran pest population, 
wherein radiation induced deleterious effects can be 
inherited and well expressed in the F1 generation. 
Keeping in mind the complexity of farming systems 
world-wide and pressure to maintain environmental 
integrity, radio-genetic Inherited Sterility, which cannot 
be considered a stand-alone technology, must be 
integrated with ecologically compatible biorational 
control tactics (using biocontrol agents and 
biopesticides)in a biorational mode for an effective pest 
suppression under appropriate IPM module (Figure 1). 

 
 

 

Figure 1: Biorational tactics (Biological control + Biopesticides) complementing SIT/F1 sterility programmes for an 
effective IPM against Lepidopteran insects. 
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