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Abstract 

Melanin from melanocytes has a broad spectrum of biological activities, including protection against enzymatic lysis, UV 

radiation, and damage by oxidants and resistance to drugs by pathogens, protection of insects against bacteria and 

antiviral protection, etc. Coloration of the hair, skin, and eye in animal depends on the quantity, quality, and distribution 

of the pigment in tissues. Pigmentation is a variety of phenotypes that is important to husbandry. We reviewed the 

progress of skin color variation in farm animals to provide insights into the biology of skin pigmentation and melanocyte. 
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Pigment and its Potential Function 

Melanogenesis 

Coloration of the hair, skin, and eye in animal depends 
on the quantity, quality, and distribution of the pigment in 
tissues. Melanocytes are pigment producing cells of the 
skin in humans and other vertebrates. Melanocytes 
originate from the neural crest with pluripotential cells 
that gradually become lineage specific during 
development, eventually they become localized in hair 
follicles as well as in the epidermis to pigment the hair 
and skin, respectively [1-3]. It is known that melanocyte is 
not only responsible for synthesis of different types of 
pigment in melanosomes, but also for the transport of 
pigment from melanocyte to the surrounding epithelial 
cell (keratinocyte). Melanins can be produced in two 
chemically distinct types, black-to-brown eumelanin and 
yellow-to-reddish-brown pheomelanin by the melanocyte 
in mammal and bird. The eumelanins are highly insoluble 
pigments that form within specialized cells known as 
melanocytes. Enzymatic action of the enzyme tyrosinase 

on the amino acid tyrosine produces melanin. In their 
primary biosynthetic pathway, tyrosine is hydroxylated to 
form the catecholamine 3,4-dihydroxyphenylalanine 
(DOPA), which is then oxidized to form 3,4-
dioxyphenylalanine (dopaquinone) before cyclization to 
5,6-indole quinones and their subsequent polymerization 
to form melanin. Similar to the biosynthesis of eumelanin, 
melanin known as pheomelanin is biologically 
synthesized, except that a precursor containing Sulphur is 
incorporated in the structure. In nature, many biological 
systems produce a combination of the two types of 
melanin. In husbandry, pigmentation phenotypes are a 
kind of important production traits, especially as a 
distinct marker for certain breed of animals. 
 

Potential Functions of Melanin 

It has been reported that melanin from natural 
sources has a broad spectrum of biological activities, 
including protection against enzymatic lysis, UV radiation, 
damage by oxidants, resistance to drugs by pathogens, 
protection of insects against bacteria and antiviral 
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protection [3-6]. Melanin also can chelate metal ions and 
to act as a physiological redox buffer [7,8]. Evidence from 
Revskaya, et al. [4] and Kunwar A, et al. [5] indicate that 
melanin from the plant and fungus can provide significant 
protection against radiation in mice. In addition, melanin 
can interact with drugs and metals and has certain 
pharmacological properties. The most significant 
properties of melanin is its antioxidant effects and 
enhancement and modulation of the immune system. 
Recently, other important and valuable characteristics of 
melanin have been identified, such as modulation of 
gastrointestinal health, hepatoprotective effects, anti-
inflammatory effects, and anti-carcinogenic effects [6]. 
 

Candidate Genes for Skin Color in Farm 
Animals 

Chicken 

The Silky chicken (Gallus gallus) is the earliest studied 
and noteworthy for the hyperpigmentation in tissues and 
organs such as the dermal layer of skin, bone, muscle, 
pleura, trachea, blood vessels, abdominal lining, and 
connective tissue. Silky is an exceptional chicken in which 
numerous melanoblasts travel via a ventral pathway and 
disperse into internal organs. Finally, these ectopic 
melanocytes induce heavy dermal and visceral 
melanization known as Fibromelanosis (Fm). 
Identification of the candidate gene for Fm locus 
continued over half of a century, until the breakthrough 
undertaken by Dorshorst, et al. [7] It has been 
demonstrated that the causal mutation of Fm is an 
inverted duplication endothelin 3 (EDN3) gene in 
genomic regions, which increase expression in EDN3, thus 
promoting melanoblasts migration and proliferation in 
early embryonic stage [7]. Interesting, Yu, et al. [8] have 
identified a novel mutation (c.–1826A>T), associated with 
the skin color (dorsal and subalar) of black-bone chicken, 
in the ASIP gene promoter by altering ASIP 
transcriptional activity [8]. This indicates ASIP 
participates in the regulation of skin color, which is 
supported by the recent study in zebrafish and avain 
[9,10]. Li, et al. [11] used the 600K Affymetrix Axiom HD 
genotyping array to perform a genome-wide association 
study on pure lines of 19 Tibetan hens with dermal 
pigmentation shank and 21 Tibetan hens with yellow 
shank to refine the Id location. The genome-wide study 
revealed that 3 SNP located at 78.5 to 79.2 Mb on the Z 
chromosome in the current assembly of chicken genome 
(galGal4) were significantly associated with dermal shank 
pigmentation of chickens, but none of them were located 
in known genes. The interval we refined was partly 
converged with previous results, suggesting that the Id 

gene is in or near our refined genome region [11]. Zhang, 
et al. [12] investigated the genetic basis of the gray 
dilution phenotype in the Anti tile-like gray chicken. They 
found that the allele E of the MC1R gene and FM alleles act 
together to cause the development of the "five-black" 
phenotype (black feather, comb, skin, shank, and beak), 
whereas the MLPH mutation results in defective 
melanosome transport, leading to the development of the 
"five-gray" phenotype [12]. In additional, Zhang, et al. [13] 
mapped the gene responsible for the dermal shank 
pigmentation in chickens by an association analysis and a 
differential expression analysis, and found that GRAMD3 
could be the most likely candidate gene for the Id locus. 
 

Pigs 

The belt pattern can be described as a white band of 
varying width around the midsection of the body but does 
not always encircle the body completely, and is 
considered to result from a lack of melanocytes. Giuffra, et 
al. [14] confirmed the dominant inheritance of the belt 
pattern in Hampshire swine and identified the belt locus 
as the fourth allele at the KIT locus on pig chromosome 8. 
Fernandez, et al. [15] reported that two OCA2 intragenic 
haplotypes were associated with skin color variation in 
Iberian pigs , which provide evidence of a suggestive 
dominant effect of haplotypes on color intensity and 
indicate an important contribution of additive polygenic 
effects (h2 = 0.56 +/- 0.21) to the variance of this trait. 
The phenotype of ACOP (ambilateral circumocular 
pigmentation) is characteristic for some breeds of farm 
animal, such as Rongchang pig and a minority of the FV 
animals of the Fleckvieh (FV) cattle breed. In areas where 
animals are exposed to increased solar ultraviolet 
radiation, ACOP is associated with a reduced 
susceptibility to bovine ocular squamous cell carcinoma 
(BOSCC, eye cancer). Interestingly, Chen, et al. [16] found 
a short insertion in the distal melanocyte-specific 
regulatory region of MITF creates a de novo silencer that 
completely eliminated the expression of the transcripts 
for the MITF-M isoform, which led to observed 
phenotypes of deafness and skin depigmentation, similar 
to the phenotype of Waardenburg syndrome in humans. 
Xu, et al. [17] compared expression profiles of coding and 
non-coding RNAs from white and black skin in Wuzhishan 
pigs using high-throughput RNA sequencing method. 
They demonstrated that key genes such as MLANA, PMEL, 
TYR, TYRP1, DTC, TRPM1 and CAMK2A had significantly 
different levels of expression in the two skin tissues, and 
that a total of 15 lncRNAs, 11 miRNAs and 7 genes formed 
23 lncRNA-miRNA-gene pairs, suggesting that complex 
regulatory networks of coding and non-coding genes 
underlie the coat color trait in Wuzhishan pigs. 
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Cattles 

Pausch, et al. [18] identified QTL point to MCM6, PAX3, 
ERBB3, KITLG, LEF1, DKK2, KIT, CRIM1, ATRN, GSDMC, 
MITF and NBEAL2 as underlying genes for eye area 
pigmentation in cattle. The twelve QTL regions explain 
44.96% of the phenotypic variance of the proportion of 
daughters with ACOP. The chromosomes harboring 
significantly associated SNPs account for 54.13% of the 
phenotypic variance, while another 19.51% of the 
phenotypic variance is attributable to chromosomes 
without identified QTL. These support a polygenic 
inheritance pattern of ACOP in cattle and provide the 
basis for efficient genomic selection of animals that are 
less susceptible to serious eye diseases. Color sidedness is 
a dominantly inherited phenotype of cattle characterized 
by the polarization of pigmented sectors on the flanks, 
snout and ear tips. It is also referred to as 'lineback' or 
'witrik' (which means white back), as color-sided animals 
typically display a white band along their spine. Color 
sidedness is documented at least since the Middle Ages 
and is presently segregating in several cattle breeds 
around the globe, including in Belgian blue and brown 
Swiss. Durkin, et al. [19] reported a novel CNV-generating 
translocation mechanism involving circular intermediates, 
namely, color sidedness is determined by a first allele on 
chromosome 29 (Cs(29)), which results from the 
translocation of a 492-kilobase chromosome 6 segment 
encompassing KIT to chromosome 29, and a second allele 
on chromosome 6 (Cs(6)), derived from the first by 
repatriation of fused 575-kilobase chromosome 6 and 29 
sequences to the KIT locus. Awasthi Mishra, et al. [20] and 
Rothammer, et al. [21] identified TWIST2 as the candidate 
gene of the belted phenotype in Brown Swiss. Hofstetter, 
et al. [22] found a non-coding regulatory variant in the 50-
region of the MITF gene is associated with white-spotted 
coat in Brown Swiss cattle. Zwane, et al. [23] reported 
that KIT and MITF were associated with skin 
pigmentation in three South African indigenous breeds 
(Afrikaner, Drakensberger, and Nguni) using whole 
genome sequencing. 
 

Sheep and Goats 

Penagaricano, et al. [24] identified candidate genes 
associated with the development of black skin spots in 
Corriedale sheep, and found that C-FOS, KLF4 and 
UFC1could be candidate genes associated with the 
development of black skin spots. Raadsma, et al. [25] 
identified QTL of 13 skin and fibre pigmentation traits in 
sheep. A total of 19 highly significant, 10 significant and 
seven suggestive QTL were identified in a QTL mapping 
experiment using an Awassi × Merino × Merino backcross 

sheep population. They revealed that the ovine TYRP1 
gene on OAR 2 was a strong positional candidate gene. Up 
to 47% of the observed variation in pigmentation was 
accounted for by models using TYRP1 haplotypes and 83% 
for models with interactions between two QTL 
probabilities, offering scope for marker-assisted selection 
for these traits. The Youzhou dark goat is a natural 
mutant with dark skin over the whole body including the 
visible mucous membranes in China. We investigated the 
genetic basis of the skin hyperpigmentation in Youzhou 
dark goat [26-28]. Our findings suggest that a presumed 
structure variation (duplication or insertion) in ASIP 
might be responsible for its lower expression in the hyper 
pigmented skin (Youzhou dark goat) by determining the 
distribution of melanocytes across the body at early 
development stage, suggesting ASIP might be the key 
candidate gene for the skin hyperpigmentation in You 
zhou dark goat. In addition, two another interesting 
pigmentation phenotypes in sheep (Ovis aries) and 
goat(Capra hircus) have been reported recently, the 
black-boned sheep and goat, which characterized in 
hyperpigmentation of the muscle, bone surface 
(periosteum), kidney, inner skin, heart, lung and trachea, 
compared with the red coloration in normal animal 
[29,30]. Deng, et al. [29,31-33] and Jiang, et al. [34-36] 
investigated that polymorphism of the pigmentation 
genes and histological characteristics respectively, but the 
causative genes associated with the hyperpigmentation 
phenotype in Black-bone sheep and goat remain to be 
identified further. 
 

Conclusion and Perspective 

Unlike the model animal such as mice and rat, there 
are few melanocyte lines available for further 
investigations in farm animals, which hinder the further 
investigation of pigmentation in farm animals. In addition, 
most investigations of pigmentation phenotypes focus on 
variation of coat color rather than skin color in the 
livestock. However, investigations of the skin 
pigmentation can provide valuable information for human 
diseases associated with melanin, such as skin 
melanopathy, melanosis coli, mucosal melanosis, etc. The 
findings in mice and human may contribute much to our 
understanding of the genetic basis for skin color variation 
in farm animals, despite the fact that there are many 
differences in dermal microstructure between mice and 
human [37]. Especially, many important and valuable 
findings from mice in vivo and in vitro are milestones in 
this topic [38-49]. With the emerge of the state of the art 
in life science technology such as high throughput 
sequencing (PacBio and Manopore) and genome edition, 
it is more and more feasible for people to reveal the 
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molecular mechanisms underlying the phenotypes of skin 
color in farm animals. 
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