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Editorial

Plasmodium undergoes a sophisticated invasion 
process to enter red blood cells (RBCs), a critical step in its 
life cycle. The invasion process is intricately regulated and 
involves a series of well-coordinated events. Membrane 
compartmentalization and dynamics play a central role in 
this process. The parasite actively reorganizes its membranes 
and manipulates those of the host cell to facilitate its entry. 
Once inside, it resides within a parasitophorous vacuole, a 
membrane-bound compartment that shields it from the 
host’s immune defenses while allowing it to exploit host 
resources. Understanding molecular and cellular mechanisms 
underlying these membrane interactions provides valuable 
insights into potential therapeutic targets.

Figure 1: Lipid Raft. 1. Non-raft membrane 2. Lipid raft 3. Lipid raft-associated transmembrane protein 4. Non-raft membrane 
protein 5. Glycosylation modifications (Glycoproteins and Glycolipids) 6. GPI-anchored protein 7. Cholesterol 8. Glycoplipid. 
This image is licensed under creative commons attribution.

Membrane compartmentalization organizes the 
plasma membrane into distinct domains with specialized 
functions. Plasmodium infection takes advantage of this 

compartmentalization through various mechanisms. Lipids 
rafts, rich in cholesterol and sphingolipids, allow the parasite’s 
entry into host cells. These domains serve as platforms for 
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receptor clustering, facilitating the interaction between 
the parasite and the host cell membrane. After invasion, 
Plasmodium resides within a parasitophorous vacuole (PV) 
derived from the host cell membrane. This compartment 
acts as a protective niche, separating the parasite from the 
host cytoplasm while allowing nutrient acquisition and 
waste disposal. The parasite induces compartmentalization 
within the host cell, forming structures such as Maurer’s 
clefts. These are membrane-bound compartments essential 
for protein trafficking and erythrocyte remodeling (Figure 1) 
[1-3].

Membrane dynamics encompass the processes 
of deformation, fusion, and trafficking within the cell 
membrane. The Plasmodium parasite exploits these 
mechanisms to support its lifecycle. A key stage is the 
invasion of erythrocytes by Plasmodium merozoites, a highly 
coordinated and complex process that induces transient 
deformations in the host cell membrane. The invasion begins 
with the merozoite reversibly attaching to the erythrocyte 
surface by binding to specific receptors, such as glycophorins 
and complement receptors. It is followed by an irreversible 
reorientation of the merozoite, aligning its apical pole 

with the erythrocyte membrane. A tight junction forms a 
specialized protein complex that establishes close contact 
between the merozoite and the host cell. This junction 
acts as a seal, guiding the invagination of the erythrocyte 
membrane to engulf the parasite, ultimately leading to the 
formation of the parasitophorous vacuole (PV). The PV is a 
specialized compartment that protects and nourishes the 
parasite within the host cell. During the formation of the PV, 
the parasite deploys proteins such as Rhoptry Neck Proteins 
(RONs) and Erythrocyte Binding Antigens (EBAs) to mediate 
membrane fusion events, ensuring a seamless entry into the 
host cell. These interactions are crucial for the successful 
invasion and survival of the parasite. The parasitophorous 
vacuolar membrane is a hybrid structure derived from 
the parasite and the erythrocyte, enabling the parasite to 
acquire nutrients and evade immune detection. During 
the invasion, the parasite sheds its surface coat. It releases 
contents from secretory organelles, each serving distinct 
functions. Micronemes facilitate adhesion and junction 
formation, rhoptries modify the host cell, and dense granules 
maintain the vacuole. This process showcases the parasite’s 
sophisticated adaptations for survival and growth within its 
host (Figure 2) [4-6].

Figure 2: Erythrocyte invasion by Plasmodium merozoite. A- Merozoite attachment. B- Merozoite reorientation and junction 
formation. C- Parasitophorous vacuole formation and invasion. D- Pinching off the junction and shedding of surface coat. E- 
Ring stage.

Once inside an erythrocyte, Plasmodium reprograms the 
host cell to suit its survival needs. The parasite sends proteins 
across the parasitophorous vacuole membrane (PVM) into 
the host’s cytoplasm and membrane, triggering significant 
changes. These modifications affect the erythrocyte’s stiffness, 
permeability, and surface protein makeup. By creating 
New Permeability Pathways (NPPs) facilitated by parasite-
formed channels and altered host transporters, the infected 

cell becomes more accessible to nutrients. Additionally, 
Plasmodium reshapes the erythrocyte’s cytoskeleton and 
lipid composition, increasing its flexibility-a vital adaptation 
that helps the parasite navigate narrow microcapillaries and 
evade splenic filtration [7].

Plasmodium parasites remodel red blood cells (RBCs) 
to survive and evade the host immune system. They form 
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surface knobs packed with cytoadhesion proteins like 
PfEMP1 (Plasmodium falciparum Erythrocyte Membrane 
Protein 1), enabling infected RBCs to adhere to endothelial 
cells and avoid spleen clearance. Inside RBCs, the parasites 
reside in parasitophorous vacuoles, which contain tubo-
vesicular networks and detergent-resistant membranes rich 
in lipids, supporting parasite growth and nutrient acquisition. 
The Maurer’s clefts direct parasite proteins like PfEMP1 to 
the RBC surface, ensuring functional knob formation and 
cytoadherence, which can lead to severe complications such 
as cerebral and placental malaria. Infected RBCs also exhibit 
increased metabolic activity, enhancing nutrient uptake and 
waste removal via modified membrane channels. While aiding 
parasite survival, these adaptations offer potential targets 
for therapeutic interventions and vaccine development. The 
ability of Plasmodium to manipulate membrane dynamics 
is essential to evade immune detection. In Plasmodium 
falciparum infections, the surface of infected red blood cells 
develops specialized protrusions known as knobs. These 
structures anchor cytoadherence proteins like PfEMP1, 
enabling the infected cells to adhere to microvascular walls 
and avoid clearance by the spleen. Additionally, the parasite 
alters or removes specific host membrane proteins, such as 
CD47 and CR1, to further reduce the likelihood of immune 
recognition (Figure 3) [8,9].

Figure 3: Plasmodium-Infected Red Blood Cells. 
1-Nucleus. 2- Endoplasmic reticulum. 3- Golgi apparatus. 
4- Mitochondria. 5- Apicoplaste. 6- Digestive vacuole. 7- 
Parasite cytoplasm. 8- Parasitophorous Vacuole. 9- Tubo-
vesicular Networks. 10- RBC cytoplasm. 11- Maurer’s 
clefts.

A deeper understanding of membrane 
compartmentalization and dynamics during Plasmodium 
infection reveals promising therapeutic opportunities. 
Interfering with lipid rafts or receptor-ligand interactions 
could block merozoite entry while disrupting the export 

of parasite proteins, which could hinder erythrocyte 
remodeling and compromise parasite survival. Targeting 
membrane permeability, modulating New Permeability 
Pathways (NPPs), or inhibiting ion channels could deprive 
the parasite of essential nutrients. These processes are 
central to Plasmodium’s capacity to invade and thrive within 
host cells. The complex interaction between parasite and 
host membranes drives malaria pathogenesis and highlights 
critical vulnerabilities for intervention [10-39].
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