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Abstract 

Global warming has a direct impact on the geographic distribution and abundance of reptiles, and it can even lead to their 

extinction. Theoretical models project that many lizards could migrate along an altitudinal gradient, however, this 

prediction does not take into account lack of oxygen or hypoxia as a constraint factor for migration. We discuss possible 

morpho physiological traits that could affect whether ectotherms can migrate from lower to higher altitudes, despite the 

potential negative effects of hypoxia. It is fundamental that climate change research considers the vulnerability of 

ectotherms facing global warming, not only in terms of their thermal biology, but also considering their physiology. 
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Global Warming and Ectotherms  

NOAA (National Oceanic and Atmospheric 
Administration) data have served as the basis for 
innumerable scientific studies demonstrating a gradual 
increase in the average temperature of the planet [1-3], 
(Figure 1). This increase is of almost 0.5°C if we take as a 
starting point the average temperature recorded between 
the years 1961 to 1990, and of almost 1°C if we compare 
it with the second half of the 19th century, that is, 
between 1850 and 1900 [4]. Global warming is related to 
an increase in atmospheric CO2, which is a strong 
indicator that one of the main causes of the 
environmental warming is the intensification of the 
greenhouse effect [4]. 

Global warming is also detectable locally; in Figure 2 
we show a graph made with data obtained from the 
meteorological station of Tenango del Valle, State of 
Mexico (19° 06′ 09″ N and 99° 35′ 20″ W), where we 
clearly observe an increase in air temperature, especially 
during the early 1990s. Although relatively low 
temperatures are observed in the 80s and 90s, the 
tendency to raise environmental temperatures is 
irrefutable. Furthermore, the latest report issued by the 
United Nations Intergovernmental Panel on Climate 
Change (IPCC) concludes that we are close to passing the 
crucial threshold of 1.5°C above pre-industrial 
temperature levels, which would substantially alter many 
of Earth’s ecosystems desertification and would increase 
droughts, wildfires, and floods [5]. 
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Figure 1: Temperature and CO2 over the years, note 
the increase in both parameters. Source: Original 
creation based on NOAA data. 

  
 

 

Figure 2: Note de increase in environmental 
temperature over the years. Source: Original creation 
based on data from the Tenango del Valle 
Meteorological Station. 

 
 

In addition to this, several studies have speculated 
that global warming will cause the extinction of species as 
well as changes in their spatial distribution, although 
there are few data that validate such predictions [6,7]. 
Particularly, in the case of non-avian reptiles such as 
lizards, global warming is a very powerful selective force. 
From a metabolic point of view, animals can be classified 
into two large groups, endotherms and ectotherms, 
according to the way they produce and maintain their 
body temperature. Three major traits differ between 
these groups: 1: Ectotherms (including lizards and other 

non-avian reptiles) acquire their body heat through 
exposure to environmental heat sources. In contrast, 
endotherms produce their body heat through metabolic 
processes that involve transforming the food they ingest 
into heat, which implies higher trophic costs. 2: When the 
environmental temperature decreases, ectotherms lower 
their body temperature and their metabolism. For 
example, during the night, ectotherms use only a third of 
the energy they use during the day; however, for most 
endotherms the decrease in temperature at night plays an 
inverse role, because they must increase their metabolism 
to maintain a constant body temperature. 3: The need to 
maintain body temperature causes an endothermic 
organism to spend more time foraging to acquire enough 
food to maintain its body temperature. In contrast, 
ectotherms invest a less time in foraging and need a 
smaller amount of food per unit body mass, freeing them 
to spend extra time on reproduction and invest a greater 
proportion of their resources in fecundity [8,9]. 
 

Although ectothermic organisms have several 
advantages over endotherms, there are important costs 
associated with ectothermic thermoregulation. The most 
prominent is the limitation imposed by environmental 
temperatures on ectotherms’ latitudinal and altitudinal 
distributions. Ectotherms’ dependence on ambient 
temperatures for body heat limits them to environments 
where the temperatures allow them to be active during at 
least part of the year. In contrast, the internal 
temperature regulation of endotherms allows them to 
inhabit environments where the ambient temperature is 
outside their active range for much of the year. This 
pattern explains the predominance of endotherms in 
ecosystems where the environmental temperature is 
extremely low throughout the year, such as the polar 
areas [8,9]. 

 
Considering this information, various groups of 

herpetologists have begun to analyze the effect of global 
warming on reptile species [6,7,10] and predict how they 
can cope. One idea that has been discussed in the 
literature is that reptiles could migrate along an 
altitudinal gradient, such as the mountains, to search for 
thermally adequate sites [6,7]. However, in addition to 
their lower temperatures compared to lower altitudes, 
higher altitudes have a lower amount of oxygen available, 
a phenomenon called hypoxia [11-14]. 

 
Because oxygen is essential for all animals, both 

endotherms and ectotherms must acclimate (via 
phenotypic plasticity) or adapt (as a result of natural 
selection) to environments with hypoxia. In ectotherms 
these acclimations and adaptations include a great variety 
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of morphophysiological changes in the cardiovascular and 
respiratory system [15]. Possible strategies include 
increasing the transport of oxygen in the blood by 
increasing the number of erythrocytes, increasing 
hematocrit and hemoglobin concentrations, and 
increasing the area of erythrocytes. Not all ectotherms 
exhibit all these changes, but they have each been 
described in fish, frogs and lizards [11-14]. In addition, at 
lower oxygen, metabolic rates in ectothermic animals 
tend to be reduced [16].  
 

Lizards and Hypoxia 

Faced with a scenario of elevated temperatures 
associated with global warming, some ectothermic 
species may have the option of migrating to cooler 
environments at higher altitudes. However, this refuge is 
only available to species that can respond 
morphophysiologically or metabolically to hypoxia 
[14,17,18]. The mechanisms of phenotypic plasticity 
and/or adaptations for coping with hypoxia have been 
analyzed through population-level comparisons of several 
species of vertebrates living in high and low elevations. In 
these species, blood traits such as erythrocyte count, 
hematocrit percentage and hemoglobin concentration 
tend to change with altitude. However, the direction and 
details of these changes vary by taxon: for example, in 
mammals and birds (with few exceptions) the response to 
hypoxia is to increase the values of blood traits in a 
phenomenon called the blood response. In amphibians, in 
contrast, erythrocyte counts typically increase but their 
size decreases [12]. In the case of reptiles, it is difficult to 
establish a clear pattern based on existing data. For 
example, in our laboratory we have found that some 
lizards of the genus Sceloporus present a hematic 
response to hypoxia [14,18], but this response is not 
observed in individuals of Heloderma horridum [19].  

 
In Mexico three lacertilians have been studied in 

detail: Sceloporus torquatus [14], Sceloporus grammicus 
[18] and Heloderma horridum [19]. Sceloporus torquatus 
is a saxicolous lizard [20], distributed in central Mexico. 
According to the Official Mexican Standard (NOM-059-
ECOL-2010) it is endemic to Mexico and is not subject to 
any special protection [21-23]. It has a snout-vent length 
of between 15 and 20 centimeters, and adult males show 
blue coloration in the gular region and in lateral patches, 
which makes it a very striking lizard for the illicit pet 
trade [24]. It has been studied because it has a wide range 
of altitudinal distribution (from 1450 to 3000 m altitude) 
and is abundant in moderately disturbed areas. This 
lizard exhibits a hypoxic blood response, increasing its 
blood values and thereby increasing its capacity to 

transport oxygen from the lungs to the tissues [14], 
(Figure 3). Wheaters, et al. [25], were the first to show 
that an ectotherm can respond to hypoxia, and with this 
knowledge it became feasible to predict an altitudinal 
migration of lizards in the future. However, it is still 
necessary to determine whether the thermal biology of 
these organisms could allow such migration [26,27]. 
 
 

 

Figure 3: Blood values observed in Sceloporus 
torquatus, note the linear increase at higher altitude 
greater blood trait. Source: Original creation based on 
data from González-Morales, et al. [14]. 

 
 

Evolutionary Ecology of Thermoregulatory 
Behavior in Ectotherms 

Two main hypotheses have been proposed regarding 
the thermal biology of ectotherms in heterogeneous 
environments, such as altitudinal gradients: the first was 
proposed by Adolph, et al. [28] and suggests that thermal 
features should show adaptation to the environment; that 
is, they can be modified due to seasonality, latitude and 
altitude. Such is the case of the lizard Iberalocerta galani, 
in which the selected temperature (the temperature 
chosen by the animals under laboratory conditions) is 
high in spring and low in summer, with the aim of 
minimizing the costs of thermoregulation [29]. The 
second hypothesis proposes that thermal biology is 
evolutionarily conservative, that is, it is not modified by 
the effect of season, latitude or altitude, so behavioral 
adjustments are sufficient to mitigate environmental 
changes [30]. This hypothesis also has empirical support; 
for example, Sceloporus undulatus show similar selection 
temperatures in two populations from different altitudes 
[31].  

 
For the genus Sceloporus in general, the current data 

are better suited to the evolutionary conservatism 
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hypothesis, because most studies have found that body 
temperature and activity do not vary with altitude or 
latitude [32]. This has led to the idea that 
thermoregulation in thermally unfavorable environments 
represents a very high cost, so lizards that live at extreme 
altitudes must compensate at various levels of biological 
organization to survive and reproduce in those places. 
However, studies documenting the existence and 
mechanism of this compensation are lacking [32].  

 
The lizard Sceloporus torquatus can be considered as 

an eurythermic species, meaning that it has a wide range 
of selected temperatures, which in the laboratory range 
from 22.4 to 33.7ºC [26]. These results suggest that S. 
torquatus may be able to migrate to higher altitudes and 
avoid the effects of global warming. We conducted 
another study using a higher-altitude lizard, Sceloporus 
grammicus, which is an arboreal lizard that is distributed 
in central Mexico. Its common name is mesquite lizard, it 
lives from 450 m to 4600 m altitude and according to the 
Official Mexican Standard NOM-059-ECOL-2010, it is not 
subject to any special protection [22-24]. This lizard has a 
blood response to altitude, in that lizards from 3600 m 
exhibit higher values of most blood traits than those from 
2500 m However, lizards living at 4300 m have similar 
values to those from relatively 2500 m for hemoglobin 
concentration and erythrocyte size [18], (Figure 4). This 
was the first study that showed that the hematological 
response to hypoxia may differ between moderately high 
altitudes and extremely high altitudes, probably using 
morphophysiological adjustments we currently do not 
understand. 
 

 

Figure 4: Blood values observed in Sceloporus 
grammicus, note the quadratic relationship between 
blood value and altitude. Source: Original creation 
based on data from González-Morales et al. [18]. 
 

 
Thermal set points in the genus Sceloporus appear to 

be evolutionarily conservative, although selected 

temperatures vary with altitude [31]. In our laboratory, 
we observed one individual of the species S. grammicus 
active at 5ºC [27]. This within-species variability in 
thermal set points suggests that many species in the 
genus Sceloporus will be able to cope with global warming 
thanks to their wide altitudinal distributions. Lizards of 
the genus Sceloporus also appear to exhibit a blood 
response to hypoxia, which may also allow them to take 
advantage of high-altitude refuges from global warming. 
However, work on the blood response to hypoxia in other 
groups of reptiles is limited, with the exception of the 
lizard Phrynocephalus vlangalii, which shows responses 
similar to those observed in S. torquatus [14,33]. In 
addition, in our laboratory we studied the species 
Heloderma horridum with the aim of observing whether 
these organisms are capable of responding to hypoxia in a 
hematic manner [19]. 

 
H. horridum is a venomous lizard whose distribution is 

recorded from the Mexican state of Sonora to Guatemala. 
Its altitudinal distribution is reported from sea level to 
1200 m. It is a species considered "threatened" under 
Mexican law, due to the destruction of its habitat [19]. For 
this reason they are often kept and bred in captivity, 
although unfortunately many zoos or herpetariums are 
located outside their natural altitudinal range (for 
example, Africam Zafari in Puebla, at 2400 m 18° 56′ 14″ 
N and 98° 08′ 12″ W). 
 

 

 

Figure 5: Blood values observed in Heloderma 
horridum, note that there is no relationship between 
values and altitude. Source: Original creation based on 
data from Guadarrama, et al. [19]. 

 
 

Previous work in our laboratory suggested that H. 
horridum does not show a blood response to changes in 
altitude [19], (Figure 5). However, these animals survive 
well in zoos at altitudes above their known altitudinal 
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range [34]. This ability may be explained, at least in part, 
by the biology of this species, which we know inhabits 
poorly oxygenated burrows for long periods (up to 62 
days) [35]. In lizards, acclimation to hypoxia in the 
absence of a blood response may involve cardiac shunting 
[36]. These cardiac adjustments are typically defined by 
their direction, either as right-to-left (R-L) or left-to-right 
(L-R). A L-R shunt represents the recirculation of blood 
into the pulmonary circulation; this produces over-
oxygenation. Heloderma horridum may use a L-R shunt 
when faced with high-altitude environments [37,38]. 
Although H. horridum appears capable of dealing with the 
hypoxia present at high altitudes, from the sole study that 
exists of its thermal biology suggests the range of 
temperatures at which lizards of this species can be active 
is from 19.9 to 29.5ºC [34]. If this active temperature 
range applies across the species, its distribution is likely 
to be limited to warm environments. 
 

Conclusion 

As average temperatures increase worldwide due to 
climate change, it seems logical to explore the idea that 
ectothermic species will be able to track their preferred 
temperatures by migrating to higher altitudes. Previous 
work on this hypothesis in saurians has focused primarily 
on their thermal biology. However, as we discuss here, 
hypoxia tolerance may also affect which lizard species can 
take advantage of high-altitude refuges from climate 
change [14,18,19].  

 
Comparative studies are necessary to understand how 

the blood response to altitude and other adaptations to 
hypoxia vary across reptiles and amphibians. Our 
laboratory has shown that there are morphological 
changes in gas exchange systems in salamanders of the 
genus Ambystoma in relation to altitude [39]. However, 
studies of morphological changes in the cardiovascular 
systems or in the metabolism of high or Low Mountain 
lizards are needed, which would allow us to know if there 
are other mechanisms through which ectotherms can 
cope with global warming. For example, changes in the 
size of the heart and lungs or even an increased micro 
capillary at the tissue level. Other metabolic changes may 
also occur; for example, individuals in hypoxic 
environments may show predominance of anaerobic 
muscle fibers, which would require less oxygen and 
glucose for their daily activities and could also reduce 
oxidative stress and therefore increase longevity. All 
these questions remain to be explored in the diverse 
groups of reptiles. 
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