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Abstract 

Church’s Sideband (Monadenia churchi) is a medium-sized endemic terrestrial snail with a broad geographic distribution. It 
provides an excellent opportunity to evaluate habitat variance across a diverse geologic, topographic, and ecologic landscape. 
Herein I document and model variance in macrohabitat characteristics of five riverine-segregated Eco-geographic Units 
(populations) within the range of the species (Mad and Sacramento rivers, and Northern, South-Central, and Western basins). 
The most common forest cover-types were Sierra Mixed Conifer (49.6%), Douglas Fir (14.1%), and Montane Hardwood-
conifer (8.7%). Statistical comparisons showed significant differences in 93.3% of the cover-types among groups. Principal 
Components Analysis of macroscale biotic and abiotic ecological variables accounted for 51.7% of the combined variance along 
both vectors for the species. K-means clustering using Multidimensional Scaling showed good separation of point-samples for 
the Sacramento River and Western Basin, but there was considerable overlap in point-samples among the remaining groups. 
All Habitat Suitability Models showed suitable habitat widely distributed throughout the range of M. churchi, but most areas 
consisted of Low suitability interspersed with few areas of Moderate to High “quality” habitat. For all groups, Generalized 
Additive Model regression of grid-cell density against macroclimatic co-variates exhibited the best fit compared to models 
of Forest Structure and Exposure-Distance to Nearest Stream. Dot-plots of variable importance, produced by Random Forest 
Regression, showed that predictor categories with importance values > 10 were: 1) Macroscale Climate (64.0%, n = 78), 
followed by Exposure-Distance to Nearest Stream (20.0%), and Forest Stand Structure (16.0%).
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Introduction

Delineation of suitable habitat is vital to the success 
or failure of species management, particularly as relates 
to the potential release or relocation of focal special status 

taxa. A primary objective in site selection is finding areas 
with the most desired ecological conditions. This process is 
generally based on a priori defined qualitive or quantified 
species-specific habitat criteria. Initially, most criteria used 
in evaluating species-driven site selection for management 
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purposes are of a geographic nature. This means that site 
selection is a spatially driven process. Also, evaluation of 
landscape-level variance in preferred ecological affinities 
generally requires a multi-criteria decision-making 
process, which results in development habitat suitability 
models (HSM) based on species-driven site preferences. 
Identification of multiple macroscale site-specific attributes, 
by use of synergistic modeling of environmental criteria, 
may also contribute to the efficiency, quantity, and quality 
of spatial analyses used for potential site selection in areas 
previously not surveyed.
 

Information on the geographic distributions, spatial 
relationships, and habitat affinities of terrestrial gastropod 
communities in northern California is largely nonexistent 
[1,2]. Habitat criteria for most taxa have been poorly 
documented, rarely quantified, and based largely on 
anecdotal natural history information obtained during 
proximate-level species inventories [3-7]. Knowledge of the 
geographic scope and macroscale ecological detail of suitable 
habitat of terrestrial mollusks is, therefore, critical to the 
understanding of the habitat requirements of a particular 
taxon for the purpose of resource conservation, especially at 

the community level.

For example, Church’s Sideband (Klamath) land snail 
(Monadenia churchi) is a medium-sized endemic terrestrial 
mollusk found in several northern California counties 
(Figure 1) [8]. This taxon is considered reflective of a species 
that occurs at many locations over a large geographic range. 
The historical and current distribution of M. churchi, and 
other terrestrial snails, in this region represents relics of the 
Late (Upper) Pleistocene Epoch (~129,000 and c. 11,700 
years ago), when climate was much cooler and more mesic 
than today [9]. Historically, populations of M. churchi were 
referenced in the context of “western” and “eastern” segments 
with only anecdotal information on plant community type 
found throughout a diverse and complex topographic 
landscape. It was hypothesized that habitat associations 
varied between these segments. At the time, it was though 
that eastern populations tended to inhabit mostly rocky 
riparian corridors, whereas western populations tended to 
dwell within more upland sites of late-serial forest, mixed-
conifer forest, pine-oak woodlands, or within riparian 
vegetation composed of various rock types [10,11].

Figure 1: Map of study area and distribution of point-samples for M. churchi and each Eco-geographic Unit (EGU) separated by 
major river systems. Dashed black line represents an arbitrary polygon surrounding all observed point-samples used herein. 
Point-samples are colored by EGU.

Without reference to eastern or western segments, a 
predictive habitat model found that on average M. churchi 
occurred most frequently in areas dominated by late-seral 
hardwood (oak = Quercus spp.) cover and basal area, which 

lacked late successional forest characteristics at either a 
macro- or micro-habitat scale [1]. Yet quantification of suitable 
habitat at either scale is lacking for this taxon. Importantly, 
there has been no documented assessment (ecologically 
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or genetically) of the potential significance of geographic 
or topographic discontinuities, including potential stream 
valleys or more importantly the major riverine barriers that 
encompass the full geographic range of M. churchi.

As such, M. church provides an excellent opportunity to 
evaluate macroscale environmental variance across a diverse 
geographic, topographic, and ecological landscape. My 
specific research objectives were fivefold. First, I evaluated 
and quantified variance in biotic and abiotic environmental 
attributes at a macroscale using Geographic Information 
Systems (GIS) data layers. This allowed me to describe 
differences variation among point samples for the M. churchi 
and for each riverine-segregated cluster of point-samples 
(Eco-geographic Unit [EGU]; [12]). Second, I developed HSMs 
models based on species-driven site-specific preferences. 
Binary (presence-absence) data were not used in my analyses. 
Third, I developed hypothesized estimates of grid-cell 
density generated from habitat preferences obtained from 
the original point-sample occurrence data. Fourth, I used 
regression models to fit and compare hypothesized density 
estimates (response variable) to individual and categories of 
environmental predictors (explanatory variables or drivers) 
for the species and each of the five EGU within M. churchi. 
My study provides baseline documentation for spatial 
decision support and habitat suitability useful in applied 
management of M. churchi, which was aimed at facilitating 
future conservation planning and potential listing status.

Methods and Materials

Study Area

My research focused on the range of M. church within a 
segment of the Klamath Bioregion centered on the Greater 
Trinity Basin, northern California. This area includes 
Humboldt, Mendocino, Shasta, Siskiyou, Tehama, and Trinity 
counties, and much of the Shasta-Trinity and Six Rivers 
National forests (Figure 1). Importantly, this area is bisected 
by several major river systems. Within this zone there is 
abundant Douglas fir (Pseudotsuga menziesii), white fir (Abies 
concolor), ponderosa pine (Pinus ponderosa), sugar pine (P. 
lambertiana), incense cedar (Calocedrus decurrens), tanoak 
(Notholithocarpus densiflorus), and Pacific madrone (Arbutus 
menziesii) forest cover-types. At its southwest boundary, this 
segment of the basin also intergrades with montane coastal 
forest of the North Coast Bioregion [13]. Watersheds within 
the basin are mostly within mountainous terrain, with the 
only level land in a few narrow valleys (Weaverville Basin, 
and Hyampom and Hayfork valleys) dominated by mixed 
conifer and hardwood forest, narrow riparian corridors 
of white alder (Alnus rhombifolia), big leaf maple (Acer 
macrophyllum), and various species of willow (Salix spp.). 

Basin uplands consist of deciduous hardwood understories of 
Pacific madrone, giant chinquapin (Castanopsis chrysophylla), 
tanoak, and canyon live oak (Quercus chrysolepis) cover-
types as far south as Mendocino County. Foothills of the 
western slope of the Sacramento River Valley (Shasta and 
Tehama counties) sport major forest cover and vegetation-
types, which proceed downslope through Klamath mixed 
conifer forest, patches of montane hardwoods, progressively 
tapering riparian corridors, montane and mixed assemblages 
of chaparral, and annual grassland [14]. Climate of the 
region tends to be Mediterranean, with cool, wet winters 
and hot, dry summers. Average annual precipitation over the 
Trinity River watershed is ~1400 mm. Precipitation ranges 
from ~940 mm in lowlands to as high as ~2200 mm [15]. 
Approaching the northern Sacramento River Valley average 
annual temperatures range from ~27.8℃ in July to ~7.8℃ in 
December. The wettest month is December (~90.7 mm rain), 
and average annual precipitation is ~429.3 cm/yr. 

Eco-geographic Units (EGU)

Point-samples of M. churchi were a priori grouped into 
five EGUs: 1) Mad River, 2) Northern Basin, 3) Sacramento 
River, 4) South-Central Basin, and 5) Western Basin (Figure 
1). Each EGU was delineated based on the presence of 
historically defined large-scale riverine systems (natural 
breaks), which encompassed the full geographic range 
of the species within and adjacent to the Greater Trinity 
Basin. Placement of EGUs was not based on GIS watershed 
delineations. Watershed data layers tend to be mostly 
arbitrarily that describe the physics of water movement in 
a defined space [16]. They and are not generally intended 
as a management tool for biological use, assessing genetic 
relatedness, or evaluating patterns of historical biogeography 
among biological or ecological units (S. dymond, University 
of California, Davis; pers. comm. 2015). This is because 
watershed data layers are not always indicative of connected 
or disconnected hydrological systems. For example, within 
the geographic range of M. churchi several watersheds 
transcend opposite sides of the Trinity, South Fork Trinity, 
Mad, and Sacramento rivers. Further, some tributary creeks 
(Italian, Swede) are in the same watershed, but they are not 
connected hydrologically [2].

Data Collection and Survey Methods

I obtained Universal Transverse Mercator (UTM) survey 
coordinates for point-samples (occurrence points) of M. 
churchi during surveys of M. setosa for genetic analyses [17]. 
Field surveys focused on historical qualitative accounts of 
suitable habitat for M. churchi based on documented searches 
[18,19]. I sampled active snails during warm, wet, foggy, 
or rainy conditions during March to May and September 
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to October 2008 and 2009. I focused on areas by use of 
opportunistic visual search based on historical descriptions 
of suitable microhabitat, which was rapid (~30 min/per site) 
and entailed neither degradation nor soil removal [20,21]. I 
also used geo-rectified point-samples from inventory plots 
developed by the Department of Agriculture, United States 
Forest Service, Six Rivers National Forest obtained from 
the Northwest Forest Plan’s Survey and Manage program 
[10,22]. Point-samples collected by USFS were conducted 
weduring the spring by use of a stratified random procedure 
[4,5] when daytime temperature was > 5C° and soil was moist 
as determined by touch. Each plot was sampled for terrestrial 
mollusks twice, with a minimum of 10-days between surveys. 
Searches targeted the most likely mollusk habitat by inspecting 
“preferred” features (downed wood, rocks, ferns) within a 
5-m radius surrounding that feature (ecological stratification 
[23]). In total, I included 2949 M. churchi point-samples. I 
used GIS-based Landsat Visual Ecological Groupings (CALVEG; 
[24]) and California Wildlife Habitat Relationships (CWHR; 
[25-27]) to assess geographic variation in point-samples for 
forest cover-type vegetation and forest stand structure. CWHR 
is a habitat classification information system and predictive 

model for terrestrial wildlife, It is based on the assumption 
that wildlife species respond to forest structure within a 
~16.2-ha minimum mapping unit. A minimum mapping size 
of ~2.5-ha pixels was used to contrast CWHR in forest cover-
type attributes for each point-sample.

I used 15 environmental predictor variables to 
evaluate macroscale habitat preferences (Table 1). From 
these I created four sets of covariant categories describing 
macroscale environmental variance: 1) Forest Cover-type 
(CALVEG), 2) Forest Stand Structure (CWHR), 3) Macroscale 
Climate measures obtained from geo-rectified raster data 
for Northern California [28,29], and 4) properties of the 
landscape describing exposure and distance from a point-
sample to the nearest stream (henceforth referred to as 
Exposure-Distance to Stream), which were generated from 
10-m digital elevation models. Because Forest Cover-type 
is purely a descriptive variable, I only used covariants in 
categories 2, 3, and 4 to model habitat suitability and to 
assess estimates of grid-cell density in M. churchi and each 
EGU separately.

CWHR forest stand cover-types Attributes

AGS = Annual grassland, BAR = Barren, BOP = Blue oak-foothill pine, CPC = Closed-cone pine cypress, DFR = Douglas fir, KMC 
= Klamath mixed conifer, LAC = Lacustrine, MCH = Mixed chaparral, MCP = Montane chaparral, MHC = Montane hardwood 
conifer, MHW = Montane hardwood , PPN = Ponderosa pine, SCN = Subalpine conifer, SMC = Sierran mixed conifer, WFR = 
White fir. GIS datasets were captured at 1:1,000,000 scale; minimum mapping size of ~2.5-hectar pixels.

Forest Stand Attributes (Conifer Cover from above [CCFA], Hardwood cover from above [HCFA], Over-story Tree 
Diameter [OSTD], Total Tree cover from above [TCFA], Tree Size Class[TSIZ])

CALVEG vegetation cover from above (mapped vegetation [%] cover [crown] from above) by aerial photos. Total tree cover, 
Conifer tree cover, and Hardwood cover from above mapped as a function of canopy closure in 10% cover classes: 0 (< 1%), 5 
(1 – 9%), 15 (10 – 19%), 25 (20 – 29%), 35 (30 – 39%), 45 (40 – 49%), 55 (50 – 59%), 65 (60 – 69%), 75 (70 – 79%), 85 (80 
– 89%), and 95 (90 – 100%). CALVEG overstory tree diameter class mapped mixed tree types using average diameter at breast 
height (DBH = 1.37 m above ground) for trees forming the uppermost canopy layer [30] using average basal area (Quadratic 
Average Diameter or QMD; [31]) of top tree story categories: 1 = seedlings (0 – 2.3 cm QMD), 2 = saplings (2.5 – 12.5 cm QMD), 
3 = poles (12.7 – 25.2 cm QMD), 4 = medium sized trees (50.8 – 76.0 cm QMD), and 5 = large sized trees (> 76.2 cm QMD). 
Tree size classification derived from mapped attributes corresponding to parameters derived from the CALVEG and CWHR 
systems. Tree size codes (ranked): 1 = seedling tree, 2 = sapling tree, 3 = pole tree, 4 = small tree, 5 = medium-large tree, and 6 
= multilayered tree. Map product a scale of 1:24,000 to 1:100,000. 1:100,000.

Average Monthly Macroscale Climate Attributes (Summer Temperature [TASM ℃], Winter Temperature [TAWN ℃], 
Summer Precipitation [PASM mm], Winter Precipitation [PAWN mm])

Average monthly climate attributes were derived from the PRISM (2024; [29,32]) where long-term average datasets were 
modeled using a spatially gridded digital elevation model (DEM) as the predictor grid for specific climatological periods. Values 
were based on monthly 30-yr average “normal” datasets covering the conterminous US, averaged over the period 1991-2020 

and included both “historical” and current climate trends. Monthly data were scaled at 2.5 (4 km) resolution.

Covariant predictor category (Aspect [ASPC], Elevation [ELEV m], Hill-shade [HLSD], Slope[SLOP], Distance to Nearest 
Stream [DNST m]) 
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Maps of aspect, elevation, hill-shade, and slope were all derived from a United States Geological Survey (USGS) Digital 
Elevation Model (DEM; 1:250,000-scale/3-arc second resampled to 10-m resolution). Aspect obtained from a raster surface 
that identified down-slope direction of maximum rate of change in value from each cell to its neighbors. Equates to slope 
direction and values of each cell in the output raster show compass direction of surfaces measured clockwise in degrees from 
zero (due north) to 360° [33]. Degree’s aspect in direction = north = 0°, east = 90°, south = 180°, and west = 270°. Values of cells 
in an aspect dataset indicate direction cell’s slope faces. Flat areas of no down slope direction = value of -1. Aspect quantified 
by use of aspect degrees binned into one of eight 45° ordinal categories (N, NE, E, SE). Elevation (m) obtained from vertical 
units of a spaced grid with values referenced horizontally to UTM projections referenced to North American Datum NAD 83. 
Hill-shade was obtained from a shaded relief raster (integer values ranging from 0 – 255). The output raster only considered 
local illumination angle. Analysis of shadows considered effects of local horizon at each cell. Shadowed raster cells received 
a value of zero. Slope was obtained from a raster surface that identified gradient or rate of maximum change in z-value from 
each cell of a raster surface. It relates maximum change in elevation over distance between a cell and its eight neighbors, thus 
identifying the steepest downhill descent from the cell [33]). Range of slope values (0° - 360°; flat = 0°, steep = 35° to 45°, 
moderate = 5° to 8.5°, and very steep > 45°). Distance to the nearest stream obtained from CDFW GIS Clearing house (CDFWGIS 
2024). Although this measurement is generally related to more proximate (microhabitat) conditions, these primary order 
streams/rivers may potentially reflect mesic/riparian conditions within the watershed at a macroscale-level.

Table 1: Descriptions of biotic and abiotic covariant environmental predictors, categories, codes, and plant species assemblages. 
These data were used to compare macroscale variance between point-samples for the species and each Eco-geographic Unit 
(EGU) across the species rang, and in the development of GIS-based macroscale suitability models.

Statistical Analyses

I performed all analyses using programs that run on the 
R Statistical Software platform (ver.4.3.3) and set statistical 
significance at α < 0.05. I evaluated univariate normality in 
habitat parameters using the adjusted Anderson-Darling 
test (AD; Package “nortest” v1.0-4). All tests for normality 
failed (Figure 2). Thus, I used nonparametric statistics to 

evaluate significance in follow-on tests of environmental 
variance. I evaluated fit distributions by visual use of density 
histograms, and several theoretical density distributions 
using the Package “fitdistrplus” (v1.1-11, functions “fitdist”, 
“gofstat”, “AIC”). I determined the best fit distribution to the 
data by use of Akaike’s goodness of fit criterion (AIC). The 
smaller the AIC the better the fit.

Figure 2: Histograms of theoretical density distributions for environmental parameters measured for each point-sample 
throughout the range of the M. churchi. ASPC = Aspect, CCFA = Conifer Cover from Above, D.Est. = Estimated Grid-cell Density, 
DNST = Distance to Nearest Stream (m), ELEV = Elevation, HCFA = Hardwood Cover from Above, HLSD = Hill-shade, OSTD = 
Over-story Tree Diameter, PASM = Average Annual Summer Precipitation (mm), PAWN = Average Annual Winter Precipitation 
(mm), SLOP = Slope, TASM = Average Annual Summer Temperature (℃), TAWN = Average Annual Winter Temperature (℃), 
TCFA = Total Tree Cover from Above, and TSIZ = Tree Size Class; AD = Anderson-Darling statistics.
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I used Kruskal-Wallis non-parametric ANOVA rank 
sum test (X2; Package “stats” v3.62) to evaluate the null 
hypothesis of no overall significant difference between M. 
churchi and among EGUs for each environmental variable, 
and in Random Forest Regression [34,35]. When the omnibus 
test was rejected in variable relationships post-hoc pairwise 
comparisons were made using the Dunn test statistic (Z). I 
adjusted p-values using the Bonferroni correction method (α 
= 0.99) to counteract the problem of inflated Type I errors 
when engaging in multiple pairwise comparisons. I used 
non-parametric Spearman’s rank correlation 2-tailed test 
(rs; Package “easystats” v0.7.1) to calculate the strength 
and direction of the relationship between pairs of variables 
whether linear or not.

To avoid variables becoming dominant due to different 
or large measure units, I scaled all the data to unite variance 
(mean = 0, and standard deviation = 1) when running 
Principal Components Analysis (Program “FactoMineR”). 
I used this unconstrained method of ordination to identify 
the extent of association, assess the relative ability of each 
parameter to explain variation among EGUs, and explore 
variance in macrohabitat data decomposed into PC axes 
(vector) when plotted along the first two axes. I used classical 
nonlinear Metric Multidimensional scaling, in combination 
with K-means clustering, as a visual representation of the 
distance (similarities) relationships among EUG’s point-
data based all environmental data (MDS; Package “stats” 
v3.62). MDS is a flexible and adaptable technique that: 
1) can handle complex data, 2) is not restricted to linear 
projections of the data (it is nonlinear), 3) can be applied to a 
wide range of information, including numerical, categorical, 
and mixed data, and allows exploration of relationships 
in lower-dimensional space (2D) for easier interpretation 
[35,36]. I used K-means clustering to visualize structure 
among river-segregated EGUs relative to the 2D-dimensional 
relationships displayed in the PCA for the species. A K-means 
iterative algorithm was used to partitioned EGUs into pre-
defined non-overlapping EGU (cluster), where each point-
sample belongs to only one EGU. It makes the intra-cluster 
point-data as similar as possible while keeping clusters as 
different (far) as possible. Point-data were assigned to a 
cluster such that the sum of the squared distance between 
point-data and the cluster’s centroid (arithmetic mean of all 
point-data within that cluster) was at the minimum.

Because my data were not normally distributed, I used 
Generalized Additive Modeling (GAM; Package “mgcv” v1.8-
34; [37]) in all regressions of D.Est. (response variable) 
with environmental predictors. This method: 1) is a semi-
parametric extension of Generalized Linear Models (GLM), 
which extends multiple linear regression to allow for non-
linear relationships between response and explanatory 
variables; and 2) is flexible enough to handle complex patterns; 

and 3) it can capture intricate, non-linear relationships that 
traditional linear models cannot represent [38,39]. Because 
my data were positive real valued and predominately right-
skewed (Figure 2). I used a Gamma error-structure for the 
non-exponential GAM family distribution to establish the 
relationship between continuous non-negative response 
variable(s) and the smoothed functions of predictor variables 
[40]. Statistics reported from each GAM regression included 
parametric coefficients for the intercept (mean of predicted/
response values [y]) and various other standard statistics 
(estimate, standard error, t-value, P-value). Other statistics 
included: 1) Ref.df = degrees of freedom used to compute 
test statistics, 2) GAM F statistic = approximate significance 
of the smooth terms, 3) R2(adj) = proportion of variance 
in the response variable explained by predictor variables 
by adjusting for the number of predictors in the model, 4) 
Dev.Exp. = the proportion of null deviance explained most 
appropriate for non-normal errors, 5) p-value and 95% 
confidence bands for spline lines, and 6) effective degrees of 
freedom (edf). The edf values estimated from GAM models 
were used as a proxy to evaluate the degree of non-linearity 
in driver-response relationships. In all GAMs I used the “gam.
check” function (replications [rep] = 500) to evaluate model 
diagnostics. Models with the low AIC values was deemed 
“best-fit.”

Habitat Suitability Model

I attached GIS raster and vector data layers of 
environmental variables to all snail observed point-
samples. I then generated a set of 100000 (100k) random-
points contained within an arbitrary “Research Area” (RA) 
surrounding the known geographic range of M. churchi (Figure 
1). The boundary of the RA extended ~3 km in all directions 
beyond any known historical sample point for M. churchi. I 
chose a ~3 km boundary around the RA to potentially include 
any unsampled areas adjacent to known samples, given the 
species’ limited movement, niche tolerances, and abiotic and 
biotic interactions [41]. From the original point-samples I 
computed standard statistics for all variables by species and 
for each EGU separately. I computed minimum values for 
each variable. I then added each value, one-by-one in a string 
of minimums, for use as selection criteria to query the 100k 
random-points for the species and each EGU separately (Table 
2). This approach provided a simple method of selecting 
variables from all attributes for use in generating hypothesized 
suitability maps from throughout the range of M. churchi and 
for each EGU, and in areas where sampling has historically not 
occurred. The resulting HSMs were displayed by us of kernel 
density heatmaps for each group separately. Polygonising 
each raster heatmap quantified the approximate hectares in 
each suitability category (Low, Moderate, and High), based 
on natural breaks in abundance of kernel densities for each 
group.
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Evaluation of the performance of HSMs is generally 
accomplished by testing a model against population 
measures, such as species density or reproductive success 
[42-45]. The assumption being that the relationship between 
the response variable and a selected environmental predictor 
(or suite of predictors) signals high “quality” species-specific 
habitat conditions [46]. Previous studies have demonstrated 
that for macroscale climate models, areas of good habitat 
correlate significantly with areas of high abundance, while 
the reverse is also true [47,48]. Thus, to obtain comparative 
estimates of hypothesized point-sample densities associated 
with macroscale measures of environmental attributes I: 
1) generated a 500 x 500 m grid-cell polygon layer within 
the boundaries of the RA, 2) overlayed the 100k random-
points onto the grid, and 3) attached random-points that fell 

within each grid-cell to its respective centroid. This process 
produced 993 estimates of D.Est across the species range 
and within the boundaries of each EGU. I assumed that 
hypothesized areas with high D.Est values were indicative of 
high-quality habitat. I also assumed that each environmental 
predictor functioned in a single driver-response relationship 
for the covariants within the three predictor categories 
(Forest Stand Structure, Macroscale Climate, Exposure-
Distance to Stream). A check on sampling error for point-
samples throughout the range of M. churchi found no 
significant correlation between D.Est. and distance to the 
nearest road from where snails were observed (rs = -0.050, 
p = 0.119, n = 993 grid-cell). This indicated that there was no 
bias in sampling in relation to proximity to road access.

M. churchi (n = 2949) Mad River (n = 297)
Variable x̅ Min Max Range SD vars x̅ Min Max Range SD

ASPC 163.6 1 360 359 102.5 ASPC 172.4 1 358 357 99.1
CCFA 43.9 1 95 94 26.1 CCFA 49 1 95 94 24.5
D.Est 6.2 1 27 26 5.3 D.Est. 5.2 1 15 14 4.1
DIST 468.3 0.3 1774.2 1773.9 308.1 DIST 540.7 18.5 1774.2 1755.7 321.8
ELEV 987.7 324 1822 1498 389.6 ELEV 1135.4 725 1741 1016 177.5
HCFA 11.8 1 95 94 19.1 HCFA 17 1 95 94 20.8
HLSD 210.2 116 255 139 29.1 HLSD 210 116 255 139 34
OSTD 19 1 40 39 10.1 OSTD 22.2 1 40 39 9.9
PASM 40.5 22.8 72.9 50.1 11 PASM 41.3 22.8 55.8 33 7.6
PAWN 1243.6 637.9 1837 1199.1 259.7 PAWN 1173.4 719.5 1485.1 765.6 128.4
SLOP 32.4 1 88 87 15.2 SLOP 32.1 1 88 87 14.6
TASM 21.1 15.2 25.6 10.4 2.5 TASM 19.7 16.4 22.2 5.8 1.2
TAWN 5.9 0.8 9.7 8.9 2 TAWN 5.2 2.5 7.1 4.6 0.8
TCFA 56.2 1 95 94 28.5 TCFA 66.9 1 95 94 23.4
TSIZ 3.9 1 5 4 1.3 TSIZ 4.3 1 5 4 1.1

Northern Basin (n = 125) Sacramento River (n = 722)
vars x̅ Min Max Range SD vars x̅ Min Max Range SD
ASPC 181.9 1 359 358 99 ASPC 162.6 1 360 359 108.2
CCFA 55 1 95 94 26.1 CCFA 24.7 1 85 84 25.6
D.Est 3.1 1 9 8 2.3 D.Est. 9.9 1 27 26 7.2
DIST 447.9 15.5 1724.7 1709.2 390.7 DIST 340.2 0.3 1151.8 1151.5 262.3
ELEV 959.2 340 1822 1482 276.4 ELEV 420.2 324 1117 793 118.7
HCFA 6.1 1 85 84 13.7 HCFA 24.4 1 95 94 25.1
HLSD 212.5 122 255 133 30.3 HLSD 215.5 141 255 114 24.9
OSTD 22.5 1 40 39 9 OSTD 14.6 1 40 39 11.5
PASM 35.9 28 59 31 7.3 PASM 44.4 37.8 72.9 35.1 6.4
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PAWN 826.3 637.9 1334.3 696.4 79.5 PAWN 1343.8 1219.6 1837 617.4 83.8
SLOP 32.7 1 86 85 16.9 SLOP 30.6 1 78 77 15.8
TASM 19.9 15.2 21.9 6.7 1.1 TASM 24.9 19.4 25.6 6.2 0.7
TAWN 4.3 0.8 6.6 5.8 0.9 TAWN 9.1 4.5 9.7 5.2 0.6
TCFA 60.9 1 95 94 25.6 TCFA 50.5 1 95 94 38
TSIZ 4.3 1 5 4 1.2 TSIZ 3.2 1 5 4 1.6

South-Central Basin (n = 1294) Western Basin (n = 511)
vars x̅ Min Max Range SD vars x̅ Min Max Range SD
ASPC 163.2 1 360 359 100.5 ASPC 156.4 1 357 356 101.5
CCFA 50.3 1 95 94 21.1 CCFA 49.5 1 85 84 25.9
D.Est 4.3 1 16 15 3.4 D.Est. 7 1 16 15 4.1
DIST 465.1 1.1 1427.3 1426.2 285.3 DIST 620.4 3.6 1441.9 1438.3 313.3
ELEV 1201 325 1789 1464 253.4 ELEV 1171 345 1601 1256 199.6
HCFA 5.7 1 85 84 11.5 HCFA 7.9 1 85 84 15.2
HLSD 209.5 131 255 124 28 HLSD 204.2 127 255 128 32.3
OSTD 20.1 1 40 39 8.3 OSTD 20 1 40 39 10.7
PASM 32 24.4 52.9 28.5 4.3 PASM 57.4 27 67.5 40.5 7.5
PAWN 1134.6 741.9 1671.1 929.2 262.9 PAWN 1521.6 710.9 1742.4 1031.5 162.2
SLOP 31.3 2 87 85 14.3 SLOP 38 4 74 70 15
TASM 19.2 17.8 21.9 4.1 0.8 TASM 21.7 17.1 25.6 8.5 1.3
TAWN 4.7 3.9 6.6 2.7 0.6 TAWN 5.4 2.7 9.4 6.7 0.9
TCFA 56 1 95 94 22.7 TCFA 57.4 1 95 94 27.4
TSIZ 4.1 1 5 4 1 TSIZ 4 1 5 4 1.4

Table 2: Standard statistics for the species and each EGU point-sample of M. churchi. SD = Standard Deviation.
*Forest Stand Structure (CCFA = Conifer Cover from Above, HCFA = Hardwood Cover from Above, OSTD = Over-story Tree 
Diameter, TCFA = Total Tree Cover from Above, and TSIZ = Tree Size Class). 
*Mesoscale Climate (PASM = Average Annual Summer Precipitation, PAWN = Average Annual Winter Precipitation, TASM = 
Average Annual Summer Temperature, TAWN = Average Annual Winter Temperature.
*Exposure-Distance (ASPC = Aspect, DNST = Distance to Nearest Stream (m), ELEV = Elevation, HLSD = Hill-shade, SLOP = 
Slope. Hypothesized cell density = D.Est. and x̅ = average for each value.

Random Forest Regression

I used the Package “randomForest” (v4.7-1.1; 
[34,35,48,49]) to check the “importance” of individual 
predictor variables on determining D.Est. This algorithm 
was executed as a regression for each group. I modeled 2001 
trees using 75% of the D.Est. and the remaining 25% as 
independent test data. The Random Forest model used five 
variables at each split. The method uses the percent increase 
in the mean squared error (%IncMSE) of predictions 
(estimated with out-of-bag-CV) as a result of variable j being 
permuted (values randomly shuffled; [50,51]). It is the 
average difference between the predicted value for D.Est. 
and the observed value. The higher the value of %IncMSE 
the more important the variable is to the regression model. 

A negative number signals that the random variable worked 
better and was not predictive enough to be important.

In the Random Forest analyses, I used two different 
metrics to measure the quality of the HSM. First, I used the 
Mean Absolute Error (MAE), which measures the average 
absolute difference between the true value of an observation 
and the value predicted by the model; low values for MAE 
indicate a better model fit. Viewed in combination, these 
metrics provided an idea of how well the model might perform 
on previously unseen data. Second, I used %VExp., which is the 
proportion of the variance in the response variable explained 
by predictor variables. The higher the %VExp the better the 
driver variables can predict the response variable, and the 
stronger the correlation between response and predictor.
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Results

Current Geographic Range of the Species

I estimated the geographic range of M. churchi to be 
~11800 km2 based on the total area encompassed by all 
documented point-samples. Importantly, I view all estimates 
of the area occupied by M. churchi to be conservative pending 
more extensive sampling in all cardinal directions. The 
greatest geographic separation among EGUs occurs along a 
rather well-defined west-to-east longitudinal gradient and 
a more well-defined north-to-south latitudinal gradient 
(Figure 1). Topographically, separation among EGUs occurs 
along both north and south sides of the mainstem Trinity 
River in Trinity and Siskiyou counties. To the west EGUs were 
separated between the Trinity River and both the western and 
eastern sides of the upper Sacramento River and expansive 
Sacramento Valley (Shasta Co.). In the mid-portion of the 
Greater Trinity Basin EGUs were separated between both 
mainstems of the Trinity River and the South Fork Trinity 
River (Trinity Co.). To the south EGUs were separated by 
the mainstem South Fork Trinity River and the west-to-east 
orientation of the South Fork Mountain range adjacent to 
the Mad River watershed (Trinity and Mendocino Cos.), and 
the western edge of the Sacramento River and Sacramento 
Valley (Tehama Co.). Small tributaries flow into the Trinity 
River (North Fork Trinity River, New River, Canyon Creek) on 
the northern side of the mainstem. Whereas the South Fork 
Trinity River receives the Hayfork Creek tributary at its head 
along the eastern slope of South Fork Mountain adjacent to 
the Trinity-Humboldt County Divide [17].

Differences in Forest Cover-Type Attributes

I identified 15 CWHR macroscale forest cover-types 
when all point-samples for the species were combined 
(Figure 3). The most common cover-type was Sierra Mixed 
Conifer Forest (SMC = 49.6%), followed by Douglas Fir Forest 
(DFR = 14.1%), and Montane Hardwood-conifer (MHC = 
8.7%). Among EGUs the most common forest cover-type was: 
1) Sierra Mixed Conifer Forest (SMC) for all groups except 
the Sacramento River EGU; 2) Douglas Fir Forest (DFR; Mad 

River, Northern Basin, and South-Central Basin); and 3) 
Montane Chaparral (MCP; Western Basin). The Sacramento 
River EGU exhibited the greatest overall diversity in the 
number of forest-cover types.

Figure 3: Bar graphs of percent frequency of forest stand 
cover-types for the M. churchi and each Eco-Geographic 
Unit (EGU). Wildlife Habitat Relationships (CWHR) forest 
stand cover-types are: AGS = Annual grassland, BAR = 
Barren, BOP = Blue oak-foothill pine, CPC = Closed-cone 
pine cypress, DFR = Douglas fir, KMC = Klamath mixed 
conifer, LAC = Lacustrine, MCH=Mixed chaparral, MCP = 
Montane chaparral, MHC = Montane hardwood conifer, 
MHW = Montane hardwood, PPN = Ponderosa pine, SCN = 
Subalpine conifer, SMC = Sierran mixed conifer, and WFR 
= White fir.

Evaluation of the total percentage of all CWHR forest 
cover-types revealed that all pair-wise comparisons between 
M. churchi and among EGUs were significantly correlated 
(Table 3). M. churchi exhibited the strong correlations with all 
EGUs except the Northern Basin. However, not all EGUs were 
significantly correlated with each other. Similarities in cover-
type was strongest between the Mad River and Northern basin 
EGUs, and the Sacramento River and the Western Basin EGUs. 
While the South-Central Basin was most strongly correlated 
with the Western Basin and Mad River.

 
Taxon/EGU Species Mad River Northern Basin Sacramento River South-Central Basin Western Basin

M. churchi (n = 2949) ------- 0.001*** 0.045* 0.002** 0.007** 0.001***
Mad River (n = 297) 0.79 ------- 0.001*** 0.014** 0.184 0.009**

Northern Basin (n = 125) 0.52 0.81 ------- 0.139 0.387 0.045*
Sacramento River (n = 722) 0.74 0.62 0.40 ------- 0.688 0.12

South-Central Basin (n = 1294) 0.66 0.36 0.24 0.11 ------- 0.003**
Western Basin (n = 511) 0.78 0.65 0.52 0.42 0.71 -------

Table 3: Spearman rank (rs) correlations of percentage groups based on CWHR 15 macroscale CWHR cover-types obtained at 
point-sample where snails were found. Correlations are below the diagonal and p-values are above; p-values: 0.05 = *, 0.01 = ***, 
0.001 = ***. Variables with the highest correlations are bolded.
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Correlation among Environmental Variables

For the species, all environmental attributes except 
Hill-shade, Slope, and Total Cover from Above were 
significantly correlated with UTM-East; and all attributes 
except Aspect, Distance to Nearest Stream, Hill-shade, 
over story Tree Diameter, and Tree Size were significantly 
correlated with UTM-N (p-values < 0.05) (Table 4). However, 
the strength of these relationships varied considerably. 
For all environmental variables, the highest positive 

correlations with both UTM coordinate vectors were with 
Average Monthly Summer and Winter Precipitation and 
Temperature. Among environmental variables the highest 
positive correlations were between Average Monthly 
Summer and Winter Temperatures, and Overstory Tree 
Diameter and Tree Size. The highest negative correlations 
were between Elevation and Average Monthly Summer and 
Winter Temperatures, respectively.

Variable UTM-E UTM-N ASPC CCFA D.Est. DIST ELEV HCFA HLSD OSTD PASM PAWN SLOP TASM TAWN TCFA TSIZ

UTM-E -------- 0.00*** 0.01** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.59 0.00*** 0.00*** 0.00*** 0.09 0.00*** 0.00*** 0.84 0.00***

UTM-N 0.56 -------- 0.21 0.00*** 0.00*** 0.33 0.00*** 0.00*** 0.15 0.39 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.28

ASPC -0.05 -0.02 -------- 0.00*** 0.45 0.59 0.05* 0.30 0.00*** 0.00*** 0.18 0.03* 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

CCFA -0.32 -0.09 0.09 -------- 0.00*** 0.69 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.38 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

D.Est 0.34 0.23 -0.01 -0.19 -------- 0.11 0.00*** 0.00*** 0.95 0.00*** 0.00*** 0.00*** 0.85 0.00*** 0.00*** 0.03* 0.00***

DIST -0.08 -0.02 0.01 -0.01 -0.03 -------- 0.00*** 0.80 0.17 0.27 0.00*** 0.00*** 0.74 0.00*** 0.00*** 0.16 0.90

ELEV -0.49 -0.33 0.04 0.31 -0.33 0.30 -------- 0.80 0.17 0.27 0.00*** 0.00*** 0.74 0.00*** 0.00*** 0.16 0.90

HCFA 0.29 0.13 0.02 -0.31 0.15 0.00 -0.39 -------- 0.37 0.00*** 0.00*** 0.00*** 0.36 0.00*** 0.00*** 0.00*** 0.00***

HLSD 0.01 -0.03 0.41 0.14 0.00 0.03 -0.02 -0.10 -------- 0.00*** 0.40 1.00 0.00*** 0.3 0.70 0.02* 0.00***

OSTD -0.14 -0.02 0.14 0.59 -0.10 -0.02 0.13 0.12 0.07 -------- 0.23 0.07 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

PASM 0.66 0.55 -0.02 -0.12 0.28 0.09 -0.15 0.18 -0.02 -0.02 -------- 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.68

PAWN 0.31 0.30 -0.04 0.02 0.08 0.13 0.17 -0.05 0.00 -0.03 0.64 -------- 0.17 0.00*** 0.02* 0.84 0.13

SLOP 0.03 0.17 0.06 0.12 0 -0.01 -0.02 0.17 -0.29 0.10 0.09 0.03 -------- 0.00*** 0.00*** 0.00*** 0.00***

TASM 0.75 0.62 -0.06 -0.36 0.39 -0.09 -0.74 0.38 -0.02 -0.2 0.51 0.09 0.1 -------- 0.00*** 0.17 0.00***

TAWN 0.59 0.38 -0.06 -0.41 0.35 -0.09 -0.75 0.42 -0.01 -0.26 0.35 0.04 0.06 0.90 -------- 0.65 0.00***

TCFA 0 0.07 0.08 0.60 -0.04 -0.03 -0.09 0.53 0.04 0.59 0.08 0 0.25 0.03 0.01 -------- 0.00***

TSIZ -0.14 -0.02 0.15 0.62 -0.1 0 0.15 0.09 0.07 0.84 -0.01 -0.03 0.12 -0.2 -0.27 0.59 --------

Table 4: Pair-wise Spearman rank correlations (rs) between macroscale GIS-based environmental attributes measures at point-
samples where M. churchi were observed. Correlation coefficients are below the diagonal and probabilities are above.
*Forest Stand Structure (CCFA = Conifer Cover from Above, HCFA = Hardwood Cover from Above, OSTD = Over-story Tree 
Diameter, TCFA = Total Tree Cover from Above, and TSIZ = Tree Size Class). 
*Mesoscale Climate (PASM = Average Annual Summer Precipitation, PAWN = Average Annual Winter Precipitation, TASM = 
Average Annual Summer Temperature, TAWN = Average Annual Winter Temperature.
* Exposure-Distance (ASPC = Aspect, DNST = Distance to Stream, ELEV = Elevation, HLSD = Hill-shade, SLOP = Slope); UTM-E = 
UTM East and UTM-N = UTM North. The correlation between summer and winter temperatures was high but they were kept as 
data because they represent seasonal trends. Variables with the strongest pairwise correlations (> 50%) are bolded; p-values: 
0.05 = *, 0.01 = ***, 0.001 = ***.

Forest Structure, Climate, and Exposure-
Distance to Stream Attributes

Principal Components Analysis of habitat parameters 
for M. churchi accounted for only 51.7% of the total 
dispersion (variance) among attributes on the first two 
components. Vector loadings, direction, and the relationship 
of each attribute arrow showed that Elevation and all forest 

stand elements had the highest positive loadings along PC 
I (27.0%) (Figure 4). Conversely, environmental attributes 
summarizing monthly Average Annual Summer and Winter 
Temperatures, and Precipitation loaded negatively along this 
vector, whereas Slope, Hill-shade, and Distance to Stream 
plotted at or near the origin. Along PC II (24.7%) all variables 
plotted positive except Elevation and Distance to Nearest 
Stream.
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Figure 4: Principal Components Analysis (PCA) of macroscale environmental variable measured at each point-sample where 
M. churchi was found. Categories and predictors are: 1) Forest Stand Structure (CCFA = Conifer Cover from Above, HCFA = 
Hardwood Cover from Above, OSTD = Over-story Tree Diameter, TCFA = Total Tree Cover from Above, and TSIZ = Tree Size 
Class); 2) Mesoscale Climate (PASM = Average Annual Summer Precipitation, PAWN = Average Annual Winter Precipitation, 
TASM = Average Annual Summer Temperature, TAWN = Average Annual Winter Temperature; 3) Exposure-Distance (DNST = 
Distance to Nearest Stream (m), ELEV = Elevation, HLSD = Hill-shade, SLOP = Slope. Aspect was left out of the analysis because 
there were no significant differences among EGUs. The cos2 color index positions variables based on their contribution and 
quality of representation along each vector (blue color = low, black color = high).

K-means clustering of macroscale environmental 
variables showed good separation along both MDS I and MDS 
II for point-samples from the Sacramento River and Western 
Basin EGUs (95% confidence ellipses), but there was 
considerable overlap among point-samples for the remaining 
EGUs (Figure 5). The Western Basin averaged the highest 
levels of precipitation, mostly in the form of rain (Table 
2). While point-samples along PC I within the Sacramento 
River EGU were a function of being found predominantly 
within down-slope foothill and lower valley habitats, 
characteristic of the more arid upper Sacramento Valley. 
These regions were significantly lower in elevation, had 

less extensive conifer cover from above, and higher levels of 
seasonal monthly average temperatures, compared to more 
montane forest environs. Point-samples within the South-
Central Basin EGU were the most expansive ecologically and 
occupied an intermediate position between and within the 
Northern Basin and the Mad River EGUs. Non-parametric 
ANOVA showed significant overall differences among groups 
for all environmental variables (Table 5). Ensuing post-hoc 
pairwise comparisons showed significant differences for all 
environmental variables except aspect for all groups. This 
variable was removed from further analyses.

Mad-Eel River Northern Basin Sacramento River South-Central Basin

Conifer Cover from Above (CCFA): 2x  = 150.5, p < 0.001***; 70% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 3.5 0.003**
SR 7.5 0.001*** SR 9.2 0.001***
SC 1.8 0.400 SC 5.1 0.001*** SC 8.3 0.001***

WB 1.7 0.500 WB 2.5 0.065 WB 11 0.001*** WB 4.5 0.001***

Hardwood Cover from Above (HCFA): 
2x  = 72.0, p < 0.001***; 40% significant

EGU Z p-adj Z p-adj Z p-adj Z p-adj
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NB 1 1
SR 3.1 0.013** SR 2.4 0.095
SC 3.6 0.002** SC 0.6 1.000 SC 8.2 0.001***

WB 1.5 0.667 WB 1.8 0.359 WB 0.9 1.000 WB 4.8 0.001***

Overstory Tree Diameter (OSTD): 2x  = 51.3, p < 0.001***; 70% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 2.2 0.134
SR 3.9 0.001*** SR 5.2 0.001***
SC 4 0.001*** SC 5.2 0.001*** SC 0.5 1.000

WB 0.9 1.000 WB 3 0.015* WB 3.5 0.002** WB 3.7 0.001***

Total Cover from Above (TCFA): 2x  = 205.5, p < 0.001***; 60% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 1.7 0.447
SR 0.2 1.000 SR 2 0.249
SC 9.5 0.001*** SC 4.5 0.001*** SC 12 0.001***

WB 4.3 0.001*** WB 1.3 0.988 WB 5.3 0.001*** WB 5.6 0.001***

Tree Size Class (TSIZ): 2x  = 114.4, p < 0.001***; 80% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 2.3 0.117
SR 6.9 0.001*** SR 7.4 0.001***
SC 5.3 0.001*** SC 6.1 0.001*** SC 3.2 0.008**

WB 0.6 1.000 WB 2.8 0.025* WB 7.4 0.001*** WB 5.7 0.001***

Average Annual Monthly Summer Precipitation (PASM): 2x  = 2,060.2, P < 0.001***; 100% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 6.5 0.001***
SR 4.6 0.001*** SR 10.4 0.001***
SC 17.3 0.001*** SC 4.4 0.001*** SC 31 0.001***

WB 14 0.001*** WB 17.2 0.001*** WB 12 0.001*** WB 40.8 0.001***

Average Annual Monthly Winter Precipitation (PAWN): 2x  = 1,119.8, p < 0.001***; 100% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 8.8 0.001***
SR 9.7 0.001*** SR 16.6 0.001***
SC 2.9 0.022* SC 12 0.001*** SC 10 0.001***

WB 22.2 0.001*** WB 25.6 0.001*** WB 16 0.001*** WB 27.4 0.001***

Average Annual Monthly Summer Temperature (TASM): 2x  = 2,211.6, p < 0.001***; 90% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 1.6 0.533
SR 24.7 0.001*** SR 15.8 0.001***
SC 6 0.001*** SC 5.9 0.001*** SC 45 0.001***

WB 12.6 0.001*** WB 7.3 0.001*** WB 14 0.001*** WB 24.7 0.001***
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Average Annual Monthly Winter Temperature (TAWN): 2x  = 1,809.7, p < 0.001***; 70% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 7.6 0.533
SR 20.4 0.001*** SR 22.9 0.001***
SC 7.8 0.001*** SC 3.3 0.006** SC 41 1.000

WB 1.3 0.977 WB 9.1 0.001*** WB 23 0.001*** WB 11.5 0.001***

Aspect (ASPT): 2x  = 10.2, p = 0.04*; 0% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 0.7 1
SR 1.8 0.323 SR 2.1 0.165
SC 1.6 0.499 SC 2 0.241 SC 0.5 1.000

WB 2.4 0.090 WB 2.5 0.058 WB 0.8 1.000 WB 1.3 1

Distance to Nearest Stream (DNST): 2x  = 276.3, p < 0.001***; 80% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 3.7 0.001***
SR 9.2 0.001*** SR 2.4 0.084
SC 3 0.013** SC 2.2 0.143 SC 9.4 0.001***

WB 4.1 0.001*** WB 7 0.001*** WB 16 0.001*** WB 9.4 0.001***

Elevation (ELEV): 2x  = 1,641.8, p < 0.001***; 80% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 5.6 0.134
SR 22.3 0.001*** SR 9.7 0.001***
SC 3.7 0.001*** SC 8.9 0.001*** SC 38 0.001***

WB 2.6 0.041* WB 7.9 0.001*** WB 30 0.001*** WB 0.8 1

Hill Shade (HLSD): 2x  37.9, p < 0.001***; 30% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 0.8 1.000
SR 1.5 0.628 SR 0.7 1
SC 1.4 0.806 SC 1.4 0.823 SC 4.2 1.000

WB 3.2 0.008** WB 2.7 0.334 WB 5.8 0.001*** WB 2.7 0.036*

Slope (SLOP): 2x  = 86.7, p < 0.001***; 40% significant
EGU Z p-adj Z p-adj Z p-adj Z p-adj
NB 0.1 1.000
SR 0.8 1.000 SR 0.7 1
SC 0.9 1.000 SC 0.8 1 SC 0.1 1.000

WB 5.5 0.001*** WB 3.9 0.001*** WB 7.9 0.001*** WB 8.8 0.001***
Table 5: Kruskal-Wallis non-parametric ANOVA rank sum test and a priori post-hoc planned comparisons between EGUs of M. 
churchi for all environmental variables. Degrees of freedom (df) = 4 for all comparisons. The percent significant post-hoc pair-
wise comparisons (n = 10 possible) for parameters are also indicated. ME = Mad River, NB = North Basin, SR = Sacramento River, 
SC = South-Central Basin, WB = Western Basin; p-values: 0.05 = *, 0.01 = ***, 0.001 = ***.
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Figure 5: Classical Nonlinear Metric Multidimensional 
scaling (MDS) showing the distribution, in 2-dimensional 
space of the distance relationships among Eco-geographic 
Units (EGU) based on macroscale environmental 
characteristics. Mad River EGU = mad, Northern Basin 
EGU = north, Sacramento River = sac, South-Central Basin 
EGU = sc, and Western Basin = west; colors are matched to 
Figure 1. Ellipses represent 95% confidence intervals.

Habitat Suitability 

A total of 16,624 random-points (16.5% of 100,000) 
were identified by selection criteria using the original point-
samples for M. churchi. The percentage of random-points 
selected was mostly consistent in proportion to area each 
EGU: 1) Mad River (3.7%), 2) Northern Basin (3.6%), 3) 
Sacramento River (4.1%), 4) South-Central Basin (4.9%), and 
5) Western Basin (3.1%). Using these random-point samples, 
estimates of hypothesized suitable habitat for the species 
ranged from locations that contained zero suitable habitat to 
highly suitable habitat (> 19 random-point samples in one 
grid cell). Similarly, samples from EGU suitability models 
ranged from zero to 21 random-point samples in one grid 
cell. The total area of suitable habitat for all EGUs combined 
totaled ~622009 ha (Figure 6). The percentage of ha in 
each suitability category varied considerably among EGUs 
compared to the species HSM (not figured). The Sacramento 
River was somewhat anomalous in this regard having less 
Low, more Moderate, and more than twice the total ha of 
Highly suitable habitat compared to other groups (Figure 7). 
Overall, bar charts for all groups showed that most habitat 
consisted of Low suitability (low quality). In total area there 
were few ha of Moderate or High suitable habitat throughout 
the range of the species. The Sacramento River, and Western 
and South-Central basin EGUs had progressively the most 
highly habitat.

Figure 6: Habitat suitability heatmaps for each Eco-Geographic Unit (EGU) within the geographic range of M. churchi. Suitability 
ranged from Low = green color, Medium = yellow color, to High = red color. Inset numbers represent the comparative range in 
hypothesized potential grid-cell density (D.Est.) for snails surrounding each sample site in different colored habitat landscapes.
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Figure 7: Bar charts of hectares of potential suitable 
habitat for M. churchi and each Eco-geographic Unit found 
in the HSM map (Figure 6) for Low, Medium, and High 
suitability.

GAM Regression, Predictors, and Fitted GAM 
and Random Forest Models

GAM edf values depicting significant driver-D.Est. 
correlations split between non-linear or highly non-linear 

(edf > 1, 61.9%, n = 21 comparisons) and linear correlations 
(edf = 1.0, 38.1%) (Table 6). Inter-group predictor-response 
relationships varied considerably in the ability to estimate 
D.Est. statistics. GAM regression showed that D.Est. values for 
point-samples within the South-Central and Western basin 
EGUs were primarily correlated with predictors within the 
Macroscale Climate and Exposure-Distance categories. D.Est. 
values for point-samples within the Mad River EGU were 
significantly correlated with covariant predictors within the 
Exposure-Distance to Stream category, whereas D.Est. values 
for the Sacramento River EGU were significantly correlated 
with predictors within the Forest Stand Structure, Mesoscale 
Climate, and Exposure-Distance to Stream categories and 
D.Est. values for point-samples within the Northern Basin 
were significantly associated with predictors within Forest 
Stand Structure and Mesoscale Climate categories. When all 
predictor variables were considered in GAM regressions for 
all groups, the categories of predictor variables significantly 
correlated with D.Est. where: Macroscale Climate followed 
by Exposure-Distance to Stream and Forest Stand Structure. 
GAM regression statistics of driver-D.Est. relationships based 
on all environmental covariants simultaneously, always 
produced the highest R2, Dev.Exp., and lowest AIC values 
across all groups (Table 7).

Intercept

M. churchi (n = 209) Mad River (n = 114) Northern Basin (n = 67)
Parametric coefficients Parametric coefficients Parametric coefficients

Est. Std.Er. t-value P-value Est. Std.Er. t-value P-value Est. Std.Er. t-value P-value
1.12 0.06 18.5 0.001*** 0.86 0.07 12.12 0.001*** 0.5 0.06 7.71 0.001***

Significance of smooth terms Significance of smooth terms Significance of smooth terms
Variables edf Ref.df GAM-F P-value edf Ref.df GAM-F P-value edf Ref.df GAM-F P-value

Forest Stand Structure
CCFA 1 1 0.74 0.395 1 1 1.56 0.214 1.85 1.97 2.69 0.105
HCFA 1 1 0.38 0.534 1.1 1.19 1.42 0.196 1 1 2.36 0.131
OSTD 1 1 1.43 0.233 1 1 0.06 0.812 1.94 1.99 3.93 0.031*
TCFA 1 1 0.59 0.442 1 1 2.48 0.119 1 1 2.61 0.113
TSIZ 1 1 0.32 0.574 1.87 1.98 2.93 0.051 1 1 4.71 0.349

Mesoscale Climate
PASM 1.9 1.99 4.61 0.009** 1.64 1.87 2.33 0.072 2 2 8.81 0.006**
PAWN 1 1 2.53 0.113 1 1 0.16 0.692 1.75 1.94 1.45 0.304
TASM 1 1 3.54 0.690 1 1 0.14 0.711 1 1 0.13 0.722
TAWN 2 2 9.61 0.001*** 1 1 1.01 0.317 1 1 1.11 0.297

Exposure-Distance to Nearest Stream
DNST 1.49 1.73 1.8 0.113 1 1 6.05 0.016* 1.5 1.74 0.35 0.588
ELEV 1.89 1.99 3.31 0.046* 1 1 4.95 0.028* 1 1 2.12 0.152
HLSD 1 1 0.11 0.739 1.07 1.13 0.01 0.981 1.24 1.43 1.59 0.315
SLOP 1 1 1.05 0.308 1.54 1.79 3.02 0.039* 1.68 1.9 1.75 0.256

Intercept

Sacramento River (n = 152) South-Central Basin (n = 528) Western Basin (n = 126)
Parametric coefficients Parametric coefficients Parametric coefficients

Est. Std.Er. t-value P-value Est. Std.Er. t-value P-value Est. Std.Er. t-value P-value
1.34 0.05 24.44 0.001*** 0.88 0.03 25.29 0.001*** 1.28 0.07 18.43 0.001***

Significance of smooth terms Significance of smooth terms Significance of smooth terms
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Variables edf Ref.df GAM-F P-value edf Ref.df GAM-F P-value edf Ref.df GAM-F P-value
Forest Stand Structure

CCFA 1.56 1.8 1.08 0.419 1 1 0.02 0.885 1.9 2 3.9 0.029*
HCFA 1 1 1.65 0.201 1 1 0.01 0.924 1 1 2.2 0.137
OSTD 1 1 6.21 0.014* 1 1 0.06 0.813 1 1 0.1 0.701
TCFA 1 1 2.14 0.146 1 1.01 0 0.929 1 1 2 0.156
TSIZ 1.89 1.99 4.09 0.022* 1 1.01 0.03 0.864 1 1 1.6 0.215

Mesoscale Climate
PASM 1 1 0.36 0.55 1.79 1.96 2.07 0.152 1.8 2 7.1 0.003**
PAWN 1.28 1.48 3.26 0.106 1 1 5.93 0.015* 1.9 2 7.5 0.002**
TASM 1 1 1.04 0.31 1.05 1 6.96 0.009** 1 1 4 0.048*
TAWN 1 1 5.53 0.020* 1.51 1.76 1.96 0.232 1 1 1.9 0.168

Exposure-Distance to Stream
DNST 1 1 7.04 0.008** 1.9 1.99 3.75 0.032* 1 1 0.4 0.535
ELEV 1 1 1.63 0.204 1 1 15.21 0.001*** 1.9 2 4 0.025*
HLSD 1.59 1.83 1.22 0.221 1 1 5.06 0.025* 1 1 0.3 0.568
SLOP 1 1 3.35 0.069 1 1 1.14 0.295 1 1 0.1 0.725

Table 6: GAM regression models of predictors-driven grid-cell density estimates for the species and EGUs. 1).
*Forest Stand Structure (CCFA = Conifer Cover from Above, HCFA = Hardwood Cover from Above, OSTD = Over-story Tree 
Diameter, TCFA = Total Tree Cover from Above, and TSIZ = Tree Size Class).
*Mesoscale Climate (PASM = Average Annual Summer Precipitation, PAWN = Average Annual Winter Precipitation, TASM = 
Average Annual Summer Temperature, TAWN = Average Annual Winter Temperature.
*Exposure-Distance (DNST = Distance to Nearest Stream (m), ELEV = Elevation, HLSD = Hill-shade, SLOP = Slope; Est. = estimate 
and Std.Er. = standard error. Individual regressions that were significant are bolded. P-values: 0.05 = *, 0.01 = ***, 0.001 = ***.

Environmental Variable category
M. churchi Mad River Northern Basin

R2 Dev.Exp. AIC R2 Dev.Exp. AIC R2 Dev.Exp. AIC
All variables 0.13 0.29 895 0.14 0.37 422 0.26 0.55 178

Forest Stand Structure 0.04 0.06 949 0.04 0.12 447 0.10 0.24 198
Mesoscale Climate 0.12 0.21 900 0.06 0.20 435 0.13 0.33 183

Exposure-Distance to Stream 0.07 0.15 923 0.10 0.19 433 0.10 0.26 190

Environmental Variable category
Sacramento River South-Central Basin Western Basin

R2 Dev.Exp. AIC R2 Dev.Exp. AIC R2 Dev.Exp. AIC
All variables 0.31 0.52 699 0.04 0.08 1900 0.09 0.27 595

Forest Stand Structure 0.14 0.16 775 0 0.01 1937 0 0.04 611
Mesoscale Climate 0.11 0.40 716 0 0.01 1939 0.05 0.12 596

Exposure-Distance to Stream 0.09 0.26 752 0.02 0.04 1908 0 0.06 606
Table 7: Summary of GAM regression fit statistics for predictors on estimates of grid-cell density (D.E.st.). Comparisons are 
based on all variables vs. categories of variables for each group. Environmental categories and variables.
*Forest Stand Structure (CCFA = Conifer Cover from Above, HCFA = Hardwood Cover from Above, OSTD = Over-story Tree 
Diameter, TCFA = Total Tree Cover from Above, TSIZ = Tree Size Class.
*Mesoscale Climate (PASM = Average Annual Summer Precipitation (mm), PAWN = Average Annual Winter Precipitation (mm), 
TASM = Average Annual Summer Temperature (℃), TAWN = Average Annual Winter Temperature (℃).
*Exposure-Distance to Stream (DNST = Distance to Nearest Stream (m), ELEV = Elevation, HLSD = Hill-shade, SLOP = Slope). 
R2 = a measure of correlation between predictions made by the model and actual observations. Dev.Exp. = proportion of null 
deviance explained; Akaike’s goodness of fit criterion for the regression; variable categories for each regression with the highest 
fit statistics are bolded.
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Figure 8: Plots of fitted estimates of density (D.Est) derived from GAM regression versus each environmental predictor 
category (Forest Stand Structure, Mesoscale Climate, and Exposure-Distance). Coefficients are provided only for M. churchi 
based on space limitations. The more overlap between blue (species) and red (category) lines the better the fit with the 
original M. churchi dataset. All plots represent a random subset (21.0%) of the total.

Figure 9: Random forest regression dot-plots of the percent increase in mean square error (%IncMSE), which shows the 
ability of each predictor variable to estimate density (D.Est.) for each group. %VExp. = percent variance explained and MSE = 
mean squared error of each model. The closer the MSE value is to zero, the more accurate the model. Predictor color categories: 
green = Forest Stand Structure, blue = Mesoscale Climate, and orange = Exposure-Distance to Nearest Stream.
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Moreover, focusing only on all variables for M. churchi, 
the Macroscale Climate model followed by the Exposure-
Distance to Stream model provided the best suite of driver-D.
Est. predictors. Statistically, the species GAM fitted model, 
based on all variables, was significantly different from 
covariant predictors within Forest Stand Structure model 
(F = 5.5, p < 0.001, n = 203) and the Exposure-Distance to 
Nearest Stream model (F= 2.6, p = 0.004), but not for the 
Macroscale Climate model (F= 1.7, p = 0.087) (Figure 8). 
Concordantly, dot-charts of variable importance produced 
by Random Forest regression [51] (Figure 9) showed that 
predictor categories with importance values > 10 were: 1) 
Macroscale Climate followed, Exposure-Distance to Stream, 
and Forest Stand Structure in sequence. Large %IncMSE 
values signaled a large difference from randomly permuted 
variables making the modeled predictors important to the 
final model. Negative or zero values indicated that driver 
variables were not predictive enough to be important, as 
the random variables performed better in the whole model 
[50,53,54]. The proportions of the variance explained 
(%VExp.) in all models was low, particularly in the South-
Central Basin and Western basins. Nonetheless, Kruskal-
Wallis non-parametric ANOVA showed a significant overall 
differences in the values of %IncMSE among all groups ( 2x  
= 21, p = 0.001, df = 5). And Dunn’s test of post-hoc pairwise 
comparisons showed that the Sacramento River and South-
Central Basin EGUs were significantly different from the Mad 
River EGU (Z = 3.5, p = 0.002, Z = 3.6, p = 0.003, respectively), 
and Western Basin EGU (Z = 2.9, p = 0.006, and Z = 3.1, p = 
0.006, respectively).

Discussion

Species Versus River-Segregated EGUs

Results of my study highlight the importance of using 
macroscale distribution models when predicting the 
distribution and habitat relationships of a wide-ranging 
species. I show that point-samples of M. churchi and its 
EGU subpopulations, separated by riverine and associated 
riparian corridors, followed predominantly east-west and 
north-south topographic vectors. Riverine-segregated 
EGUs were significantly different in all biotic and abiotic 
macroscale habitat characteristics. Ecologically, the most 
distinct EGU was the Sacramento River. Point-samples in 
this EGU are found in more arid environs’ downslope within 
foothill, scrub, and grassland habitats of the Sacramento 
Valley, compared to upslope montane forest conditions 
typically found surrounding all other EGUs. The Western 
Basin EGU was transitional for both up and down slope 
habitat conditions, whereas the Northern Basin, South-
Central Basin, and Mad River EGUs occupied more forested 
high elevation montane surroundings.

Although M. churchi point-samples were dominated by 
a diverse assemblage of macroscale forest cover-types and 
stand structure, combined with physical and other biological 
attributes, no single or suite of covariant drivers defined 
suitable macroscale habitat across the range of the species 
or individual EGUs. Instead, a more robust combination of 
environmental variables was key to the distribution of point-
samples in these groups, as determined by local ecology and 
topography. My results also show that models consisting of 
all variables were more “efficient” than models partitioned 
into individual categories of covariant predictors. Thus, given 
the macroscale differences in the ecology across the range of 
M. churchi, it seems logical to consider local heterogeneity 
among EGUs, on an individual basis, when modeling 
suitability for purposes of management and conservation 
planning. Use of a priori disjunct riverine-segregated EGUs, 
or any other ecological or topographic grouping, to construct 
a hypothetical HSMs for comparison with M. churchi 
(as a whole) would therefore, appear to be a logical and 
ecologically relevant design for modeling potential suitable 
habitat in wide-ranging taxa [48,51]).

Density Estimates

Quantification of estimates of grid-cell density, versus 
environmental predictors, varied considerably between 
and among the species and EGUs. The most significant 
GAM-generated regression models portraying predictor-D.
Est. relationships were non-linear or strongly non-linear 
relationships. These driver-response relationships were 
typical of Macroscale Climate and Exposure-Distance to 
Stream categories, which were the most important in 
modeling estimates of D.Est across the range of M. churchi. 
Detection of non-linearities (threshold responses) in 
predictor-response relationships is important because they 
often indicate ecological boundaries (EGUs) that function 
as critical reference points to avoid or target when making 
management decisions [52]. Both GAM and Random Forest 
regression models identified categories and individual 
variables that were important as covariant predictors of D.Est. 
Multiple regression of driver-D.Est. relationships based on all 
environmental covariants simultaneously always produced 
the highest R2, Dev.Exp., and the lowest AIC values for the 
species and each intra-species EGU. No individual covariant 
stood out as most explanatory compared to other attributes 
evaluated for the species or a particular EGU. These analyses 
suggests that datasets consisting of all variables were the 
most informative for use in estimating D.Est. in all groups. 
Although there was considerable variation in estimates of 
D.Est. by specific predictors, all regression analyses agreed 
that the Macroscale Climate category contained the most 
informative suite of predictors across groups, followed 
by the Exposure-Distance to Nearest Stream models. This 
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conclusion was further substantiated by Random Forest 
model statistics.

For M. churchi, all macroscale models were rather 
inefficient at predicting D.Est. As such, use of grid-cells 
in combination with random points, may not be the best 
method to estimate density or particularly informative at 
a landscape-level, even though estimates were based on 
selection criteria derived from the original point-samples. A 
better approach may be to gather density data during ground 
surveys. However, this creates logistical issues, particularly 
in species with broad geographic ranges, and in areas of 
inaccessible and rugged terrain. Moreover, detailed, and 
wide-spread density estimates of snails are rarely gathered 
and less frequently reported.

Also, because terrestrial exothermic snails are small, I 
would expect some sensitivity to climate (hot temperatures) 
and hence, the importance of microclimate in mitigating 
summer heat. However, the sites described in my study 
are mostly moderately to heavily forested. This means that 
the ecological signal of microclimatic cooling provided by 
closeness to streams could be blurred since a large portion of 
the study area was under dense canopy. Thus, complementary 
sampling at more proximate scales (microhabitat) will likely 
be a high priority during future sampling, in combination and 
comparison with macroscale-dependent habitat suitability 
delineated at the geographic level of the focal-species range.

Mapping of Habitat Suitability Models 

My use of combined minimum values as selection criteria 
for input into the HSM provided a simple way to select 
macroscale attributes without making post hoc decisions 
as to which macroscale attribute(s) provided the greatest 
potential habitat for the species. This was because no single 
variable or conspicuous suite of variables explained the 
greatest amount of variance among point-samples. Further, 
use of a small subset of variables might not capture unique 
macroscale environmental variance typical of some riverine-
segregated M. churchi, as there were many significant 
univariate differences between and among EGUs.

Geographic variance in the area of suitable macrohabitat 
illustrated in heatmaps was widely distributed throughout 
the range of M. churchi. For all EGUs availability of High or 
Moderate quality habitat was low. At the scale of the landscape 
these coarse-grained heatmaps may appear to lack sufficient 
detail about suitability at the ground level, given that climatic 
variables were at or above-canopy levels and interpolated 
from distant weather stations. Yet, when viewed at more 
proximate scales (overlayed onto specific project sites), 
the functionality of these HSM maps can provide a greater 
understanding of the locations of underlying site-specific 

characteristics at a local level (topography, exposure, forest 
cover-type, hydrology). Early on, this coarse-grained level 
of detail is particularly important when focusing on suitable 
microhabitat for: 1) assessment, 2) enhancement of low-
moderately suitable habitat, 3) relocation and transplanting 
of at-risk species based on accompanying population genetic 
information, and 4) management and planning purposes. 
Initially I estimated the geographic range of M. churchi to 
be ~11800 km2 based on the total area encompassed by all 
documented point-samples. Previous modeling estimated 
the range of the species at ~15795 km2 based on univariate 
comparisons defined by 5% probability contours for 1718 
random samples [1] and a map produced by use of theoretical 
hierarchical Bayesian spatial modeling [53]. Yet a better 
estimate for the range of M. churchi may be estimated using 
the total area encompassed by all suitable habitat categories 
for all EGUs (~6220 km2). Surprisingly, the total area of 
potentially suitable habitat modeled by individual EGUs was 
much more widely distributed throughout the range of M. 
churchi than I expected. Nonetheless, for M. churchi there 
are still large areas that have not been sampled, and likely 
will not be surveyed both within and outside the Greater 
Trinity Basin. In reference to the Klamath Biological Region 
the sample size used in my analysis was the largest, most 
ecologically diverse, and geographically widespread of any 
conifer-hardwood-dwelling gastropod yet studied.

Potential Limitations to Sampling for Modeling 
Suitability 

The occurrence of a species in a landscape is a 
function of numerous factors, each influential at different 
spatial scales. Evaluating a species distribution by use of 
multiscale models can improve the predictive ability of the 
design compared to single-scale models [55]. In suitability 
modeling selecting the most appropriate scale-dependent 
predictors and standardizing variables of different scales 
are important because use of predictors at wrong spatial 
scales can significantly bias results [54]. These issues can 
lead to overestimating a species preference for habitat and 
misleading conclusions regarding the current and future 
status, location, and management of a population [48]. 
Additionally, there are several other factors that should be 
considered when attempting to estimate how well HSMs 
depict species’ habitat preferences. For example, broad-scale 
patterns derived from spatial models may be sensitive to: 
1) sample size, 2) sampling random-point datasets based 
on presence and/or absence data, and/or 3) un-surveyed 
portions of the species range (underestimating a species 
range).

For example, it was hypothesized that a small number 
of point-samples, if randomly obtained, may be sufficient 
to adequately describe species-specific ecological affinities 
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among forest-dwelling terrestrial gastropod communities 
within late-successional forest ecosystems [1]. Yet the 
potential always exists for a small number of “random 
samples” to miss local variation across a region if not 
representative of that region. This is particularly problematic 
when organisms are not distributed randomly but are 
dispersed over a large geographic area with complex habitat 
heterogeneity, resulting in missed information concerning 
diversity and acclimatization (specialization) of populations 
to local environmental variables. Nonetheless, by greatly 
increasing the sample size of point-samples and density 
estimates across range of the species, use of random point 
sampling and grid-cell density estimation would likely not be 
necessary.

Potential for genetic differentiation

Another complicating factor that cannot be 
underestimated, but is rarely addressed in suitability 
analyses, is the presence of potentially unknown 
morphologically cryptic and ecologically syntopic species at 
or below the species-level, waiting to be unmasked by use of 
modern molecular techniques (DNA barcoding, microsatellite 
markers [17,56,57]. It is well established that animals, 
particularly ectotherms [58,59], can show morphological 
differentiation (banding patterns and coloration) and 
genetic structuring at small spatial scales as a function of 
the role of physical barriers in promoting population and 
genetic divergence [60-63]. This is an elusive problem given 
the logistical difficulty of surveying geographically and 
topographically complex, and largely remote landscapes 
(river systems, mountain ranges) potentially facilitating 
significant genetic divergence in allopatric populations, at or 
below the species-level. This consideration may also apply 
to other regionally complex molluscan faunas that contain 
morphologically cryptic and ecological equivalent land snail 
taxa.

For instance, several major river systems within the 
Trinity Basin were found to be associated with genetic and 
taxonomic differentiation in M. setosa [17]. Subclade (= 
subspecies taxonomy) differentiation among populations of 
forest-dwelling M. setosa occurred within the middle portion 
of the Greater Trinity Basin, concordant with positioning 
of major riverine corridors [17]. In M. setosa, genetic and 
systematic differentiation was based largely on a north-
south latitudinal gradient, which includes separation of 
point-samples by the Trinity River and the South Fork of the 
Trinity River. Importantly, these same rivers also interrupt 
the distribution of M. churchi. However, except for M. setosa, 
detailed comparative genetic and ecological studies of the 
relationships among allopatric populations and sympatric 
assemblages of terrestrial gastropods remains largely 
undocumented within the Klamath Biological Region. 

Given that significant habitat conditions exist between 
riverine-segregated EGUs of M. churchi, in combination 
with topographic and geographic diversity, the potential for 
allopatric divergence in some populations, particularly in 
more arid regions, is highly plausible.

Also, prior to 2002 there were virtually no 
comprehensive range-wide molecular DNA analyses of 
species-level relationships among any taxa within the genus 
Monadenia. Molecular analyses are rudimentary with no 
assessment of molecular variation among populations or 
within any taxon or species complex [64]. Monadenia setosa 
was not identified definitively as a distinct species, with 
five subspecies separated by river systems, until 18 years 
later [17]. Although popular in phylogenetic analyses [64], 
use of only a few random point-samples generally does not 
encompass the full genetic uniqueness of a species-complex. 
This is especially true when coupled with an expansive 
landscape-level geographic diversity and a diverse ecological 
and biogeographic history. Thus, sampling of > 25 individuals 
may be necessary for some species exhibiting widespread 
distribution patterns within these kinds of landscapes 
[57,58].

Lastly, as a function of molecular DNA and phylogenetic 
out-group analysis, the Sierra Sideband snail (Monadenia 
mormonum) was hypothesized to be the sister-taxon of M. 
churchi [17]. This development provides strong justification 
for additional geographic sampling in combination with 
molecular DNA investigations into the phylogenetic and 
taxonomic relationships of M. churchi versus M. mormonum. 
The Sierra sideband is found on the eastside of the Sacramento 
River valley along the Sierra Nevada escarpment that includes 
several central Sierra Nevada counties. Modenia mormonum 
is undoubtedly linked evolutionarily to other woodland- and 
forest-dwelling species in the genus, which are distributed 
southward within the Sierra Nevada cordilleran ecozone. 
Future genetic analyses could potentially facilitate discovery 
of directional phylogenetic and historical biogeographic 
relationships in the context of both the Sierra Nevada and the 
north-central coast range of California for these two species 
and their generic lineages.

Management Recommendations

Processes that determine the distribution of a species 
occur at multiple spatial scales [65,66]. My study provides 
a baseline for assessment, evaluation, and management of 
broad-scale and local environmental trends in the geographic 
distribution of Church’s sideband. For M. churchi, M. setosa, 
and other similar taxa in the region and elsewhere across 
California, I recommend that management and conservation 
of mollusk communities within the Klamath Bioregion and 
Serra Nevada cordillera follow a multiscale format that 
combines macroscale and site-specific population-level 
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assessments of suitable habitat throughout the range of each 
focal taxon [17,22]. Complementing this scale-dependent 
strategy requires use of regression analyses to evaluate the 
strength of predictor-response relationships in estimating 
density or some other reproductive output. This is because 
the effects of individual versus the collective “synergistic” 
or “threshold” characteristics of multivariate models likely 
have differential influence on the response variable. Use of 
a landscape-level approach combined with more proximate 
scales of resolution (microscale) within preferred habitat, 
and the application of molecular screening of disjunct 
populations can: 1) provide species-specific baselines, 2) 
assist in evaluating the most appropriate scale-dependent 
HSM to address spatial heterogeneity and ecological 
diversity, 3) provide a more thorough understanding of life 
history requirements, 4) allow estimates of density and 
reproductive potential across the landscape, and 5) facilitate 
a more focused and efficient pathway for future management 
and conservation of forest-dwelling mollusk communities.
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