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Abstract 

Despite the increasing deficit of taxonomic expertise, the number of newly described species since the early 2010s has grown 
exponentially. This growth is related to the increased use of DNA markers in taxonomic descriptions. However, routine use of 
DNA markers in taxonomy did not bring practical taxonomy closer to the theory. Species are unique lineages with irreversible 
evolutionary pathways, and only the presence of distinct populations within the same geographic range, or at least the presence 
of narrow hybrid zones between the parapatric ranges is a conclusive evidence of evolutionary irreversibility. In the case of 
allopatric populations, only very high genetic distances, suggesting several tens of millions of years of independent evolution, 
can be used for validation of species status. This problem cannot be solved by the broader introduction of genomic phylogenies, 
which also fail to provide robust criteria for evolutionary irreversibility. We can hardly suppose that robust validation of 
species status is applicable to all or most of hundreds of thousands of animal species, including 20,000 amphibians and 
reptiles. Instead, practical taxonomy should concentrate on describing recognizable species, maintaining a trade-off between 
sufficiently detailed descriptions of world biodiversity and the applicability of these descriptions for practical use and meta-
analyses, not pretending that formally described species reflect real lineages with independent and irreversible evolutionary 
pathways. Simultaneously, the non-critical elevation of the taxonomic status of individual geographic populations, contrary to 
the declared purpose of better-focusing conservation efforts, often has the opposite effect, leaving many formally described 
taxa outside the conservation umbrella.  
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Introduction

The invention of cheap PCR-based sequence 
technologies, established in the middle 1980s, triggered 
a revolution in taxonomy [1]. Discovery and description 

of new species since the time of Linnaeus and Pallas, were 
based on the individual experience of the naturalists. Long-
lasting discussions were going in attempts to identify the 
most informative phenotypic characters that could help to 
separate “real” species from less meaningful traits that could 
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vary among conspecific populations or morphs or make 
taxonomy more objective by introducing numerical analysis 
[2-9]. By the XX century, a generation of taxonomists arose, 
specialized on smaller organismal groups, such as individual 
families of beetles or butterflies. It generally is considered 
that years of experience are required for a person to become 
a real expert on a certain group being able to make a reliable 
diagnosis of a species. 

Generating molecular genetic data was supposed to 
make taxonomic practices more objective [10-12]. General 
biological knowledge is sufficient for seeing the DNA 
sequence differences between two phenotypically similar 
specimens. A zoologist working on a specific group of 
animals can easily convince a non-expert in his taxonomic 
suggestion, supporting his findings with some molecular 
genetic information. The new tool became widespread in 
taxonomic practices in the late 1990s; however, in original 
species descriptions of the 1990s and early 2000s, genetic 

data are rarely reported. In 2005, only in one [13] out of 31 
descriptions of new lizard species from 67 most speciose 
genera the authors provided mitochondrial sequence 
information. It does not rule out that molecular data were 
used in the practical taxonomy of these years; however, this 
usually was done for already described species or elevation of 
taxonomic status of the earlier described subspecies [14-17]. 
From this time, the inclusion of molecular data into species 
descriptions increased exponentially. In 2015, 65% of new 
lizard species descriptions referred to some molecular data 
(usually mitochondrial DNA sequences), and in 2023 this 
proportion increased to 98% [18].

Simultaneously, the number of annually described 
species increased sharply (Figure 1). In general, 50-100 
species of lizards from 67 speciose genera were described 
within a period of five years since the middle XIX century 
until the end of the XX century; since the early 2000s, this 
number increased five times.

Figure 1: The number of new species of lizards described per five year periods, since middle XVIII century to the present day. 
The diagram is based on the analysis of 67 lizard genera that include 20 or more described species, according to Uetz, et al. 
[18]. Only newly described taxa are considered; infraspecific taxa with elevated status or re-described species are ignored.

This taxonomic explosion may look surprising because 
it happened concurrently with the general decline of 
taxonomic expertise [19-21]. This fact suggests that the 
wide use of DNA sequencing was likely decisive for the fast 
growth of the nominal species’ number. The development of 
Barcoding of Life projects [22-26] was an additional factor 
for the taxonomic explosion. These projects accelerated 
efforts towards the documentation of biodiversity, and 
revealed the presence of a “barcoding gap”, i.e. some level of 
mitochondrial DNA divergence, which is in line with species 
boundaries described by experienced taxonomists [27].

Limitations of Mitochondrial DNA: Positive and 
Negative Sides

In a living cell, mitochondrial genes produce thousands 
of copies, different from most nuclear genes [28,29]. This 
makes mitochondrial DNA (mtDNA) fragments easier to 
amplify than any other parts of the genome [30,31]. As a 
result, mtDNA sequencing has become a routine method for 
phylogenetic and taxonomic studies since the late 1980s. In 
Figure 2, the growth of the amphibian and reptile studies 
using mtDNA analysis is shown between 1980 and 2023. 
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Figure 2: Growth of the number of publications including words “mitochondrial DNA”, “reptiles” and “amphibians” between 
1980 and 2023, according to Google Scholar records.

Mitochondrial gene sequences contain important 
information on species evolution. Mitochondrial phylogenies 
help to reconstruct patterns of geographic expansion of a 
taxon. Projecting phylogenies on geographic maps became 
a specific field of science called phylogeography [32-36]. 
Comparing mtDNA sequences helps to infer the geological 
time when the ancestral lineages of two populations started 
to diverge. The molecular clock hypothesis assumes that 
substitutions in individual genes are aggregated with a 

predictable speed [37,38]. Molecular clocks can be calibrated 
by known and well-dated geological events (such as the 
separation of two islands by sea) [39,40], or by comparing 
DNA sequences of current specimens with fossil DNA [41,42]. 
Molecular clock hypothesis was repeatedly criticized, 
because fixation rates of new substitutions may depend on 
the population size, and can substantially differ among taxa 
[43-46], but proper statistical analysis helps to estimate 
reasonable confidence limits [47-51].

Figure 3: Speciation process. Black line shows growth of fitness related with interbreeding of once isolated lineages due to the 
heterozis. Red line shows the effect of outbreeding depression. When the lines cross, speciation process becomes irreversible. 
Green line shows growth of the effectiveness of pre-zygotic isolation die to reinforcement.
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Figure 4: Splitting of some species of amphibians and reptiles from West Eurasia between the early XX century and present 
time. The names in the legend are those currently applied to species that were later split into two or more “derivant” species.

Simultaneously, the use of mtDNA sequences for the 
analysis of species boundaries is problematic. One challenge 
is incomplete lineage sorting [52]. Each of the two populations 
descending from a common ancestor may be not genetically 
homogenous, and fixation of alleles at polymorphic loci in 
diverging populations can occur at different speeds; both the 
same or different alleles can be fixed, depending on a locus 
[47,53,54]. As a result, phylogenetic trees based on unlinked 
genes may not coincide, causing an inconsistency between 
gene evolution and species evolution [52,55-59]. Different 
authors suggested combining sequences of mitochondrial 
and nuclear genes to infer more reliable phylogenies [60-
62]. Another problem is a common horizontal transfer of 
mitochondrial genes among closely related species [63-70]. 
Probably due to these problems, and the broader invention of 
genomic technologies, since the early 2010s, the growth rate 
of the publications presenting mt-DNA data in herpetological 
studies declined (Figure 2). 

Attempts to Overtake Incomplete Lineage 
Sorting Problem: Right and Wrong Approaches

Since late 1990s, evolutionary biologists and taxonomists 
invented a routine complementing mitochondrial sequences 
with sequences of one or more nuclear genes, usually 
those which produce multiple copies in a genome, such as 
genes C-mos, RAG-1, BDNF in amphibians and reptiles [71-
75]. Coding nuclear genes are far more conservative than 
mitochondrial DNA, probably because of continually acting 
stabilizing selection [76]. Nuclear gene sequences usually 
have too few informative positions for producing reliable, 
statistically well-supported phylogenetic patterns if closely 
related species are studied. Some authors use a concatenation 
of nuclear and mitochondrial genes, trying to increase the 

robustness of the generated phylogenies [77-81]. This is a 
conceptually incorrect approach. Concatenated sequences 
that include mitochondrial genes with a substantial number 
of informative positions and nuclear genes with just a few 
informative sites usually produce a tree simply coinciding 
with mitochondrial phylogeny. Meanwhile, the very sense 
of the analysis of incomplete lineage sorting is validation of 
a null hypothesis suggesting coinciding phylogenies, based 
on the unlinked loci analyzed separately. Other taxonomic 
papers provide separate phylogenies or haplotype networks 
based on individual nuclear genes: in this way, incomplete 
lineage sorting can indeed be detected [82-87]. 

Species Concepts: from Dobzhansky and Mayr 
to the Present Day

The taxonomic explosion of the late 1980s occurred 
along with the resuming of the discussion about species 
concepts, which never ended since the publication of Charles 
Darwin’s “The Origin of Species” [88]. A very logical concept 
of polytypic biological species to which the majority of 
scientists appealed for several decades, has an important 
weakness: it cannot be practically applied to thousands of 
described taxa [89,90]. Validation of pre- or post-zygotic 
isolation, a central issue of this concept, requires extensive 
analysis, which does not apply to most newly described 
species because of a lack of funds, time, and expertise. In 
fact, most taxonomists relied on a traditional taxonomic 
approach based on more or less subjective expert opinions 
[91]. However, the lack of a firm scientific theory behind 
the taxonomic practices challenges taxonomic conclusions. 
For this reason, concepts that were easier to validate, such 
as the phylogenetic species concept [92-94], replaced the 
biological species concept. The phylogenetic species concept 
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considers monophyletic origin as a sufficient precondition 
for considering a population to be a separate species. The 
concept of genealogical concordance, based on the idea of 
incomplete lineage sorting is, in fact, an extended definition 
of phylogenetic species, because it refers to the ancestral 
evolutionary pathway and not to the current metapopulation 
structure of a taxon.

Some other species concepts have become popular in 
recent decades. The relatively old concept of Evolutionary 
species does not require reproductive isolation as a necessary 
precondition of species reality [95-97]. The unified species 
concept of DeQueiroz, defining species as a separately 
evolving lineage, accepts ways of validating species status 
[98,99]. The departure from the biological species concept 
was largely a result of understanding that introgressive 
hybridization does not necessarily cause a merger of the 
evolutionary lineages and may occur concurrently with the 
ongoing divergent evolution [100,101].

DeQueiroz did not thoroughly explain what “separately 
evolving lineage” means. Simultaneously, one of the 
central ideas of the theory of evolution and speciation is 
the irreversibility of evolutionary changes. In general, the 
evolutionary pathway is considered to be irreversible [102-
104], although this hardly can be applied to ephemeral 
lineages that occasionally re-merge in case of secondary 
contact. I would suggest that the evolutionary pathway of 
a species cannot be reversed, and each species is unique: 
it can evolve further, split into two daughter species, or 
extinct, but not lose its distinctness from any other species. 
The irreversibility criteria is concurrent with the concept 
of evolutionary species and separately evolving lineage of 
DeQueiroz, which don’t rule out potential hybridization, but 
consider the presence of stable, species-specific complexes 
of genotypic and phenotypic characters.

Multiple genetic studies conducted in recent decades 
showed that hybridization and gene flow between diverging 
incipient species is commonplace [105,106]. Why could this 
happen? Fixation of differential de novo mutations in two 
isolated populations, as a result of gene drift and selection, 
decreases the number of the shared alleles. Interbreeding of 
individuals with different alleles at the same locus increases 
heterozygosity, reduces the probability of inbreeding 
depression, and, consequently, can increase the fitness of 
the hybrid offspring. Multiple examples suggest superior 
fitness in hybrids of even formally described different 
species [107-109]. However, in some cases, heterozygotes 
have inferior fitness [110-114]. Moreover, over time, the 
differential mutations are aggregated that change genomic 
architecture, and cause dysfunction of genes in hybrids, or 
incompatibility between nuclear and organellar genomes 
[115]. Inferior fitness of heterozygotes can also be a result 

of adaptation of the isolated populations to different 
environmental conditions [116,117]. These deleterious 
effects slowly aggregate, and above a certain threshold their 
effect overweighs the positive effect of heterosis (Figure 
3). After this time point, the speciation process becomes 
irreversible. 

Similar to the biological species concept, the 
irreversibility of speciation (i.e., presence of separate 
evolutionary pathways) can hardly apply to practical 
taxonomy. The inferior fitness of hybrids is hard to detect 
without exhaustive study on the population level. It is 
impossible to conduct such studies for hundreds of annually 
described nominal species; therefore, this criterion, albeit 
theoretically very convincing, can rarely be used as an 
effective tool. This builds a gap between evolutionary theory 
and formal taxonomy. Probably, it is counterproductive to 
apply strict species criteria for describing new species, but 
even more harmful is an incorrect application of theory. The 
monophyletic origin does not prove that populations, even 
with diagnostic phenotypic features, cannot merge in case 
of secondary contact. Neither the presence of genealogical 
concordance, nor geographic isolation can be taken as an 
evidence of irreversible speciation process. The level of 
differences sufficient for the development of full reproductive 
isolation varies among animal taxa. It could be taken as an 
indirect argument of species-level differences and not a 
conclusive evidence.

Can we give priority to one or another of these concepts? 
Irrespective of a theory, scientists need to name living 
beings for inventing terms that help to understand what 
we are speaking about. Scientific names, such as Bufo bufo, 
Lacerta agilis, or Natrix natrix save us time: we don’t need 
to write long sentences explaining what kind of animal we 
are speaking about, whether or not it has a tail and legs 
and if its body is covered with scales, or how it is colored, 
replacing long unnecessary explanations by a Latin binomial 
invented by Linnaeus. Hence, practical taxonomy, first of all, 
should pursue the nomenclature well describing diagnostic 
features of a group of organisms, and last but not least, easy 
to remember by ecologists and evolutionary biologists. 
Those purposes are rarely considered in recent taxonomic 
practices. Scientists describe thousands of “cryptic” species 
with no diagnostic phenotypic characters, based only on 
the differences in the sequence of a few genes [118]. Based 
on some sequence differences, they often split “traditional” 
species into several new ones which are difficult to remember 
by a non-expert in a specific taxonomic group. How this 
process of splitting is intensified in recent decades, in the 
example of the West Eurasian herpetological fauna is shown 
in Figure 4. In total, 25 species from 22 genera of amphibians 
and reptiles were split into 47 species by 1977, 86 species 
before 2000, and into 140 species by 2023.
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Introgressive Hybridization Challenges 
Determination of Species’ Boundaries

Although introgressive hybridization may not prevent 
continuing divergence of incipient species [100], it has a 
certain impact on the evolution within each of the hybridizing 
lineages. Some genes may be horizontally transmitted from 
one lineage to another. Typical cases of DNA transmissions 
among the species, sometimes interpreted as “reticulate 
speciation”, is transfer of mitochondrial DNA among the 
species. In some cases, such as frogs Rana chensinensis and R. 
kukunoris [66], toads Bufo fowleri and Bufo americanus [63], 
horned lizards of genus Phrynosoma [65], skinks of genus 
Messalina  [86], Alligator lizards from the genus Elgaria, or 
rock lizards Darevskia obscura and Darevskia portschinskii, in 
spite of a distinct phenotypic and allelic boundary between 
the species, mitochondrial DNA of a related species replaced 
original mitochondrial lineage in the peripheral part of their 
ranges. In the Carpathian newt (Lissotriton montandoni) 
the original mitochondrial lineage is completely replaced 
by the mitochondrial DNA of a more widespread smooth 
newt (Lissotriton vulgaris) [119,120]. The same is true 
for leaf-tailed geckos of the genus Uroplatus, or some rock 
lizards from the genus Darevskia. Genetic studies showed 
discordance between mitochondrial and nuclear phylogeny of 
at least four very distinct and reproductively isolated species 
of this genus: Darevskia alpina, D. derjugini, D. praticola, and 
D. parvula. In the first two species, mitochondrial genes are 
closer to that of lizards with whom their geographic range 
overlap than with allopatric species to which they are 
closer phenotypically and by nuclear genes. In general, the 
discordance of nuclear and mitochondrial phylogenies is not 
an exception for natural genetic systems.

Actually, we don’t know how common the introgressive 
pattern of mitochondrial DNA in different organismal groups 
is. Unfortunately, combined analysis of mitochondrial 
and nuclear genes does not always aim to infer patterns 
of introgression. As a consequence, it remains a formal 
procedure pursuing the search of some theoretical ground 
for nominating species.

Practical and Conservation Outcomes: 
Taxonomic Inflation

Some authors defined the accelerated description of new 
species in the first quarter of the XXI century as “taxonomic 
inflation”. The very idea of this definition is that unlimited 
descriptions of new species, applying to highly variable 
arguments and datasets, result in the devaluation of a species 
as a part of nature deserving attention and conservation. 
Some negative consequences of taxonomic inflation are 
discussed by previous authors [121]. Here I would underline 
the three most important ones from my point of view.

(1) Complication of the task for decision-makers. 
Governmental bodies, which are in charge of environmental 
protection, must identify conservation priorities for effectively 
spending taxpayer’s money. A routine part of this procedure 
is identifying species that need more urgent conservation 
actions than the others. In national legislation, there are no 
definitions for upper taxa or “species groups”, and for this 
reason, the officials require scientists to provide them with 
scientific names of prioritized species or, at least, subspecies. 
In private conversations, taxonomists commonly suggest that 
describing new species is useful for increasing attention to 
taxa, especially local endemics, which need to be protected. I 
think that the actual effect is the opposite. Including five taxa 
in lists of protected species (such as national Red Lists) would 
not increase the funds that a government will spend for their 
conservation. Hundreds and thousands of nominal species 
suggested for conservation actions just frighten decision-
makers who often have superficial knowledge of taxonomy. 
Further, splitting a species, formally protected by law, into 
several ones often causes a mess, and this “old” species 
remains protected by national legislation of international 
agreements only in a part of the range where the nominal 
form is found. Lizard Lacerta trilineata, snakes Dolichophis 
jugularis, Elaphe quatuorlineata, Vipera ammodytes, Vipera 
ursini, amphibians Bufo viridis and Hyla arborea are included 
under Annex II (species requiring special protection) of Bern 
convention on conservation of Wildlife and Natural Habitats 
(https://www.coe.int/en/web/bern-convention/home ). 
Simultaneously, subspecies of all these species from the 
Caucasus biodiversity hotspot were re-described as separate 
species in recent decades [122-152]. None of these “new” 
species is prioritized in conservation programs supported 
by the European Commission. 

(2)Nominal species commonly interbreed with their 
close relatives in the contact areas. Gene flow among the 
populations (either conspecific or formally non-conspecific) 
is a natural process affecting genetic diversity, exchange of 
adaptive alleles, and the effective population size. Typically, 
hybridization is not desirable because it may result in inferior 
fitness of hybrids. But simultaneously, common introgression 
of genes among populations may indicate the presence of 
positive effects of natural hybridization, including transfer of 
adaptive genes and increasing an effective population size, if 
gene flow is sufficiently high. Protection of a single nominal 
taxon and leaving unprotected adjacent populations of even 
formally different species may substantially reduce the 
effective size of its population and increase its vulnerability. 

(3)For the understanding of the structure and dynamics 
of global biodiversity, it is important to develop integrated 
analyses of faunas and floras for large regions of the World, 
including biogeographic realms. Such analyses preferably 
cover evolutionarily distant taxonomic groups. Growth 
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of the number of formally described allopatric species 
misleads scientists conducting such an analysis, causing 
overestimation of differences and hiding similarities. For 
instance, herpetological fauna of central and Mediterranean 
parts of Europe has several widespread species, such as 
Lissotriton vulgaris, Triturus cristatus, Pelophylax ridibundus, 
Hyla arborea, Bufotes viridis, Bufo bufo, Lacerta trilieata, 
Anguis fragilis, Vipera ursini, Vipera ammodytes, Elaphe 
quatuorlineata, or Malpolon monspessulanus. All these 
species were assumed to exist in the Caucasus biodiversity 
hotspot before the status of Caucasian regional populations 
or subspecies was elevated to species [127]. As a result 
of taxonomic splitting, the region has now the species 
Triturus karelinii, Pelophylax bedriagae, Hyla orientalis, 
Bufotes variabilis, Bufo verrucosissimus, Anguis colchica, 
Vipera eriwanensis, Vipera transcaucasiana, Elaphe urartica, 
Malpolon insignitus. Most of these species are hardly 
recognizable from their Mediterranean relatives without a 
detailed study of their morphology or comparison of their DNA 
markers, and their ecosystem function hardly differs from 
that of their closest relatives. However, the nomenclatural 
differences give an impression of higher differences between 
the Caucasian and European herpetological faunas than 
in fact, it has. It also inflates the importance of real relict 
endemics, such as Caucasian salamander (Mertensiella 
caucasica) or Caucasian parsley frog (Pelodytes caucasicus), 
whose separate evolution counts tens of millions of years 
and who developed unique, highly specific phenotypes and 
ecological niches [127-129]. 

Do DNA Markers Make Taxonomy Less Biased?

As said, there is hardly a universal algorithm that could 
firmly validate species status (i.e., that of an evolutionary 
lineage whose evolutionary pathway became irreversible). 
Neither morphological study nor the analysis of mitochondrial 
DNA or even genomic phylogeny can solve this question 
without deep analysis, including hybridization experiments 
or a comparative study of viability for hybrids and purebreds. 
Such kind of analysis cannot cover hundreds of thousands of 
described species, including about 20,000 amphibians and 
reptiles. Practical taxonomists and evolutionary biologists 
commonly use any argument, based on the DNA marker 
analysis, to support their nomenclatural suggestions. We 
could classify these arguments: (1) Use of genetic distance 
based on the mitochondrial sequence analysis. This approach 
may be used as an indirect argument for treating an OTU 
(operative taxonomic unit) as a separate species, assuming 
that the molecular clock hypothesis works and it is likely 
that the number of genomic architectural mutations over 
time inevitably cause reproductive incompatibility. However, 
this time may substantially vary among the taxa. Besides, in 
some cases, pre-zygotic isolation may develop before post-
zygotic [130]. (2) Mitochondrial (or nuclear) phylogeny as 

an argument for attaining species status to geographically 
separated populations. This argument is commonly 
used along with a morphological description of a taxon. 
However, monophyly is a weak argument if not supported 
by accounted genetic differences. Many local populations, 
at some stage after their establishment, are monophyletic 
groups of organisms. They often share common phenotypic 
features, which is not evident for the irreversibility of 
their evolution. Non-critical use of phylogenies for species 
description may cause extreme taxonomic inflation in the 
case of “nomenclatural harvesting” [131]. (3) Genealogical 
concordance, i.e., concurrent phylogeny based on unlinked 
genetic character. It is supposed that the lineages that 
achieved this stage of differentiation are isolated long 
enough to achieve an independent evolutionary pathway 
[132]. However, if the effective size of an isolated population 
is small, genealogical concordance can be reached in a short 
time, which may be insufficient for the development of 
pre- or post-zygotic isolation or irreversibility of evolution. 
Moreover, in most cases, scientists rely on combined 
analysis of mitochondrial and one or two nuclear genes, 
which usually have insufficient signals for building a robust 
phylogeny. Besides, concordant phylogenies based on 
very few loci are insufficient for driving conclusions about 
genealogical concordance throughout the entire genome. (4) 
The most expensive and informative approaches are those 
based on the high-throughput sequences of genomes, such 
as RAD sequencing [133,134]. These approaches help to 
build more reliable phylogenetic trees and group species 
into genetic units using Bayesian inference [135]. However, 
even in this case, one cannot rule out the effect of a small 
effective population size, when genetic specificity is achieved 
in a small period of divergent evolution, insufficient for the 
development of effective reproductive isolation. 

Generally speaking, none of the broadly used methods 
based on genetic or morphological differences between 
OTUs can be taken as conclusive evidence for separate 
evolutionary pathways, i.e. considering a population to be a 
separate species. The only safe approach remains one defined 
in early papers of Mayr, et al. [136,137] the presence of two 
distinct and non-merging taxa within the same geographic 
range. An additional group of evidence is the presence of 
a narrow hybrid zone when two species come into contact 
but remain distinct throughout most of their range, such as 
in a classical example of fire-bellied toads [138,139]. In the 
case of geographically isolated populations talking about the 
presence of different species can only be safe if the lineages 
are isolated obviously for tens of millions of years and show 
a very strong phenotypic hiatus – such as in the case of sister 
species of relict salamanders [140], or parsley frogs.

In all other cases nominating geographically isolated, 
closely related OTUs cannot be considered an objective 
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way of describing species diversity if we agree that species 
are lineages with separate and irreversible evolutionary 
pathways. But what should we do with the myriads of 
binomials, which scientists introduced for the last two and 
a half centuries? Here I would return to “practically useful” 
taxonomy: it should help scientists, not only, to understand 
what are we speaking about when using a particular 
scientific name. In other words, it should keep a balance 
between a sufficiently detailed description of the observed 
biological diversity and the ability of a person to memorize 
the meaning of words.

Both describing more and more species and renaming 
earlier described taxa (both species and higher order 
taxonomic groups) do not help to memorize species names. 
For instance, 30 years ago, most Colubrid snakes from 
the Caucasus Ecoregion were aggregated into two genera 
(Coluber, Elaphe). Currently, species from the clade to which 
the nominal genus Coluber belongs are distributed among 
ten genera, and only two of them, Macroprotodon and 
Eirenis, were not members of this genus in early taxonomic 
systems. The inclusion of these two genera into Coluber 
would be a more parsimonious taxonomic solution, although 
taxonomists preferred splitting and turning three former 
genera into ten new ones. 

In some recent papers [141,142] broader use of the 
concept of geographic subspecies is suggested for allopatric, 
genetically, and morphologically close population groups. 
Nominating subspecies may be the way to a detailed 
description of biodiversity without the infinite complication 
of biological nomenclature. Understanding diversity within 
polytypic species is important for experts working on specific 
taxa, and retaining more inclusive species names would help 
to understand diversity for the general public, conservation 
bureaucrats and activists, and scientists analyzing 
biogeographic patterns throughout large geographic 
areas. Nominating subspecies does not meet conceptual 
difficulties that meet species descriptions. The criterion 
for describing separate subspecies is clear and simple: the 
ranges of different subspecies cannot coincide or overlap. If 
they are allopatric, the subspecies can be described based 
on even little genetic differences or the presence of private 
(not necessarily diagnostic) phenotypic characters. If the 
ranges are parapatric, i.e., conspecific individuals may move 
across the geographic boundaries between populations, the 
subspecies can still be described based on distinct diagnostic 
characters but no evidence for the formation of a tension 
hybrid zone [143-145] or otherwise evidence of selection 
against the subspecies hybrids. In this case, populations 
with intermediate characters or polymorphic by diagnostic 
characters do not belong to any subspecies, and their species 
name can be used without indication of a subspecies.

Conclusion

Use of Genetic Markers for Better Understanding 
Biodiversity

Molecular markers are indispensable for various kinds 
of biodiversity research, potentially including identification 
of species boundaries, but only rarely are they correcly 
used for the identification of these boundaries. It is correct 
to identify species based on the DNA marker analysis of 
individuals from the same range or contiguous ranges, but 
in the case of allopatric taxa, mtDNA sequences and even 
genomic data-based phylogenies could only be used as an 
indirect argument, in case if the differences are excessive. In 
all other cases, the description of a new species is still based 
on the experience and preferences of a taxonomic expert, 
and molecular markers are used for supporting a pre-defined 
suggestion and not for objective and unbiased validation 
of a hypothesis. The appearance of new species names in 
checklists does not depict “true” species diversity; at least 
if we assume that species is a real evolutionary lineage that 
attained an irreversible stage of divergence from its closest 
relatives (and hence has an independent evolutionary 
pathway). For practical reasons, however, the description 
of new species does not, and probably should not pursue 
strict evolutionary concepts. Instead, it can be accepted 
that, in most cases, formally named species are more or less 
subjective entities, helping to better understand the existing 
diversity. In this latter case, however, taxonomists should not 
oversplit the existing taxa, remembering potential problems 
associated with taxonomic inflation. Molecular markers, 
meanwhile, remain a powerful tool for understanding 
phylogeographic patterns, gene flow rates among the 
populations, or speciation process [146-150].
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