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Abstract 

Enhancers are non-coding genomic regulatory elements capable of elevating gene transcription in various biological as well 
as developmental stages in the host organism. Discovered since 1981, the enhancers play major roles in genetic disease 
onset and development, orchestrating gene regulation patterns even across the same species via the sequence variations. To 
date, predicting enhancers and their targets remain a daunting task as universal enhancer markers are yet to be discovered. 
Computational enhancer target prediction involves three major approaches: supervised, unsupervised and semi-supervised 
machine learning methods which work on enhancer target features such as enhancer-promoter distance, closest promoter, 
co-conservation and correlation of molecular signals. In this review, we introduced some recently emerged enhancer target 
prediction tools as well as their modus operandi, in hope that we can provide future directions towards the development of a 
more robust tool to aid in the advancement of enhancer targeted treatment researches.    

Keywords: Enhancer Target Prediction; Supervised Learning; Unsupervised Learning; Semi-Supervised Learning 

Abbreviations: KB: Kilo Basepair; TSS: Transcription 
Start Site; AUC: Area Under Curve; DHS: DNase I 
Hypersensitive site; IMM: Interpolated Markov Chain Model; 
EM: Expectation Maximization. 

Introduction

The central dogma forms the foundation of molecular 
biology and it is widely deemed as the source of all life 
form on earth [1-10]. The non-coding regions within the 
genome are the ones responsible for various biological and 
developmental processes, especially the major regulatory 
elements such as the promoters and enhancers [11]. 
Promoters are comparably easier to be identified from 
the gene it regulates in the genome, with length ranging 
within a few kilo basepair (kb), located in proximity with 

the transcription start site (TSS) of coding or non-coding 
genes. As for enhancers, it is a different story on the other 
side of the spectrum. Enhancers are cis-regulatory elements 
that can initiate gene transcription elevation, even from 
a distance and regardless of orientation, contributing to 
various disease-related biological progressions known up to 
now [12-14]. 

The term ‘enhancer’ was first coined by De Villiers, et al. 
[15] in an attempt to describe a short (72 bp) DNA sequence 
repeat with the capability of triggering and elevating the 
gene transcription of β-globin gene of rabbit. Then, Banerji, 
et al. [16] further identified the SV40 enhancer found to 
heighten the expression of beta-globin gene in HeLa cell line. 
Generally, enhancers are short DNA elements (50-1500 bp) 
that functions as platforms for the binding of transcription 
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factors [12]. These transcription factors then work in tandem 
to collectively contribute to the increase in gene transcription 
ultimately. Enhancers are more versatile than promoters 
in terms of their readability (both forward and backwards) 
as well as their mode of action coverage (up to 1 Mbp from 
upstream or downstream of genes they regulate in one-to-
many or many-to-many manner) [12]. Several enhancers 
can even function in the form of enhancer-originating RNAs 
(eRNAs) in which the enhancer brings together both the RNA 
polymerase II as well as the general transcription factors for 
the eRNAs to be transcribed [17,18]. 

Thus far, genome-wide enhancer target prediction 
remains a big predicament in the field of genomics as there 
is no universal enhancer feature identified, to add on to 
that, their numerous cell and tissue specificities as well as 
the lack of enhancer primate model species beside human 
as reference [14,19-21]. The enhancer target prediction 
involves fewer types when compared to genome-wide 
enhancer prediction [22]. While the genome-wide enhancer 
prediction involves features like sequences, epigenomic 
modifications and eRNAs, the enhancer target prediction 
encompasses features such as enhancer-promoter distance, 
closest promoter, co-conservation and correlation of 
molecular signals utilizing supervised, semi-supervised as 
well as unsupervised machine learning approaches. Studying 
the whole genome gives us a complete view of all valuable 
information available for the subject species [11,23-36]. 
In this review, we described in brief the recently emerged 
genome wide enhancer target prediction tools and further 
compared their prediction methods. Towards the end of this 
review, we provided some insights on improvements and 
development of a more robust enhancer target prediction 
tool in future. 
 

Gene Regulation by Enhancer

The expression of gene in a given cell or tissue context 
at a specific spatial and temporal manner is orchestrated by 
a group of DNA elements named the regulatory components 
at various biological developmental life stages [37,38]. The 
gene expressions are usually regulated via a very strict modus 
operandi, at every cellular component the gene product 
passes to eventually become protein through processes 
like chromatin remodeling, transcription activation, 
modifications of transcripts, mRNA degradation, translation, 
posttranslational modifications as well as protein transport 
and degradation. This is to ensure the host organism can 
equipped itself with the required gene products to survive 
and strive in harsh environments. The gene regulation in 
eukaryotic organisms are much more complicated than that 
of the prokaryotes as multi-layered networks and cross-
acting regulatory elements are actively involved [39].

Gene regulations in eukaryotes are mostly governed by 
regulatory elements such as the promoter and enhancers via 
transcription factor binding. The core promoter can be found 
in all eukaryotic genes and the TATA box (TATAAAAAA) 
is one of the most commonly discovered examples [39]. 
Generally, the core promoter is highly conserved across all 
protein-coding genes in terms of its structure and binding 
factor as compared to other upstream promoters [40]. One 
major feature that the enhancers differ from promoter is 
that the enhancers are located in the non-coding regions 
and can be either functionally or sequence-conserved across 
diverse species. Transcription activation requires the RNA 
Polymerase II to be recruited to the transcription start site 
following the transcription initiation signals emitted via the 
interactions between enhancers and promoter as well as the 
general transcription factors (TFIIA, -B, -D, -E, -F and -H) and 
chromatin remodeling complexes (ACF, PBAF, SWI/SNF and 
RSF) [39].
 

Back in the year 1981, De Villiers, et al. [15] first define 
the term ‘enhancer’ as DNA elements that can significantly 
elevate the beta-globin gene expression in rabbit. And thus, 
the first proposed action of the enhancer is the element 
that could modify the superhelical density of DNA, improve 
the accessibility of RNA Polymerase II as well as tolerate 
nuclear matrix binding [15]. Then, Banerji, et al. [16] further 
identified the SV40 enhancer that are capable of expression 
elevation of beta-globin gene in HeLa cell line. They cloned 
the hemoglobin beta I gene harvested from rabbit and further 
inserted it into a recombinant expression plasmid with pre-
inserted SV40 enhancer, as a result, the expression was 
found to be 200-fold more than that of the negative control. 
It is from this study also, Banerji, et al. [16] discovered that 
this SV40 enhancer can work in both orientations and at any 
distances from the beta-globin gene. Since then, the enhancer 
discovery in the human genome progresses exponentially 
with the discovery of enhancers like the sensory vibrissae 
enhancer, penile spine enhancer, HACNS1 and forebrain 
subventricular zone enhancer as well as establishment of 
various enhancer database like FANTOM5 and VISTA [41-
43]. 

Besides, enhancers can also recruit transcription factors 
and serve as binding dock for transcription activation to take 
place and their sizes between 50 and 1500 base pair generally 
[12]. They are mostly cis-acting but can sometimes be trans-
acting, with the ability to modulate genes as far as 1 Mbp 
away regardless of upstream or downstream. Enhancers can 
also work in the form of enhancer-originating RNAs (eRNAs) 
where eRNAs can enhance the efficiency of enhancers 
[17,18]. In this case, RNA Polymerase II is recruited solely 
by enhancer itself and in turn work in tandem with general 
transcription factors to transcribe the eRNAs. The vital roles 
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of enhancers in shaping phenotypes evolutionarily as well as 
being pivotal in essential biological developmental processes 
such as anatomy progress and morphogenesis are deemed 
indispensable in proper cell and tissue functioning. It was not 
until recently that, the various links between enhancer and 
genetic diseases emerged through experimental discoveries 
[41,44], thus created pressing needs for rapid enhancer 
target identification, especially computationally. 

Supervised Machine Learning

The supervised machine learning involves machine 
learning that is built with strong reliance on high-confidence 
negative and positively labelled datasets (known enhancer 
target and non-enhancer target set). This training model is 
aimed towards the maximum differentiation across the cases 
from the control sets [45].

One of the supervised machine learning tools for enhancer 
target predictions that utilizes chromosome conformation 
data in defining known experimental determined enhancer 
targets is the IM-PET [46]. IM-PET employs Random Forest 
classifier to train on ChIA-PET connected enhancer-promoter 
pairs in both MCF7 as well as K562 cells as positive example 
datasets. The negative sample dataset used covers the 
random enhancer-promoter pairs with distances that obeys 
the background distribution of non-associating genomic loci 
in a chromatin fiber [47-49]. The four features employed in 
this enhancer target prediction which includes correlation 
of enhancer-promoter activity, enhancer-promoter genomic 
distance, co-conservation of enhancer and promoter 
sequences as well as transcription factor expression levels 
that bind to the enhancer. This tool had achieved 94% AUC, 
which outperformed PresTIGE, nearest-promoter as well as 
methods utilized by Ernst, et al. [50] and Thurman, et al. [51]. 

Another sequence feature based tool utilizing 
supervised machine learning to uncover enhancer targets 
is the PETModule which is motif module based [50]. The 
PETModule sourced from P300 ChIP-seq peaks from seven 
human cell lines, namely HepG2, SK-N-SH, MCF7. H1-hESC, 
GM12878, K562 and HeLa-S3, as well as known active 
enhancers from IMR90 cell line. The positive training set 
was defined by the random selection from a gigantic pool 
consisting of 1000 ChIA-PET enhancer-promoter pairs in 
K562, 1000 Hi-C enhancer-promoter pairs in IMR90 as well 
as 500 ChIA-PET enhancer-promoter pairs in MCF7 [51,52]. 
The negative training datasets were randomly selected genes 
within 2 Mb around the enhancers. A fair comparison of 
PETModule across other previously available tools revealed 
that this tool had outpaced its predecessors (IM-PET and 
PresTIGE) in terms of AUC (94.9%), precision (0.205) and F1 
score (0.286) across all datasets trained. 

The CISMAPPER is one powerful tool that can employs 
the correlation between gene expression and histone mark 
of transcription factor binding sites across diverse tissue 
types to predict regulatory targets of a transcription factor, 
a state-of-art tool that differs from other tools which uses 
genomic distance [53]. This tool was designed to generate a 
total of four ranked lists of predictions based on set of scored 
(TSS, peak) links: two on genes and TSSs as latent targets of 
the ChIP-ed TF whereas two on TF ChIP-seq peaks as latent 
regulators of genes and TSSs [53]. The link score was applied 
to sort the data entries in ascending order in each group 
respectively. When compared with other tools that predicts 
based on genomic distances, the CISMAPPER excelled in 
terms of TSS target predictions and accuracies across six out 
of the eight diverse tissues: NHEK, HepG2, HeLa-S3, HUVEC, 
Ag04450, H1-Hesc, K562 and GM12878. 

Unsupervised Machine Learning

The unsupervised machine learning is most feasible for 
the unearthing of hidden and unprecedented configurations 
straightforwardly from the data. No known and validated 
information or datasets was required as input for this type 
of training, thus diminishing the occurrence of false positives 
in the output but also narrowing the enhancer target output 
concurrently due to the scarcity in terms of known enhancer 
target markers. 

Ernst, et al. [50] employed the histone modification 
profile (namely H3K27ac, H3K4me1 and H3K4me2) 
correlation across enhancer-promoter pair within 125-kbp 
range to predict enhancer targets from the nine human 
cell types: GM12878, HUVEC, HMEC, HSMM, NHEK, H1 ES, 
NHLF, K562 and HepG2. First, the HMM was trained using 
chromatin states with 10 data tracks for each cell types. Next, 
a 15 state model was placed in focus to improve the resolution 
of biologically-meaningful patterns that has reproducibility 
across different cell types when independently processed. 
Locations associated to strong promoter state 1 (or strong 
enhancer state 4) in at least one cell type was subjected 
to multi-cell type clustering using the k-means algorithm. 
Utilizing mark intensity-expression correlation data, the 
logistic regression classifiers were trained to discriminate 
control pairs from real instances of couples of gene 
expression data and enhancer states, based on expression 
data that are arbitrarily re-assigned to dissimilar genes. This 
approach had achieved a satisfactory result of 67% area 
under curve (AUC). 

The most direct method of predicting enhancer targets 
is the closest promoter approach applied by Andersson, 
et al. [45]. They utilized the bidirectional capped RNAs (as 
measured by CAGE) as predictor of cell enhancer activities. 
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This method is simple in nature but imperfect in terms of 
the prediction coverage as the population of enhancers that 
regulates the nearest promoter covers only 40% of the total 
genomic enhancer population and multiple promoters can 
be regulated by one enhancer alone. One way to improve the 
predictions is to expand the distance range of enhancer target 
predictions to extend the population of nearest promoter 
prediction dataset pool [43]. 

PreSTIGE is another enhancer target prediction tool that 
pairs the H3K4me1 signals that are cell type-specific with 
significantly expressed cell type-specific genes to perform its 
enhancer-promoter pair predictions across 13 different cell 
types [54]. The multiple linear domain models were utilized 
to associate cell type-specific enhancers to their target genes. 
After several evaluation, their finalized domain model were 
trained to produce the maximum number of predictions, and 
at the same time, keeping the FDR at its lowest, maintaining 
the distance boundary at 100 kb as well as considering subset 
of CTCF sites. For PreSTIGE to function as an enhancer target 
predictor in a desired cell line, the normalized H3K4me1-
enhancer signal must be greater than the background (>10) 
with the addition circumstances that both the enhancer and 
the gene must be cell line specific. This approach was found 
to have identified more enriched enhancer-gene interactions 
as compared to experimental methods such as ChIA-PET , 3C 
[55], 5C [56] and eQTL [57-61]. 

The DNase I hypersensitive site (DHS) correlation 
among all candidate pairs situated inside the range of 500-
kbp gap was applied by Thurman, et al. [51] to accurately 
predict enhancer-promoter pairs from the genome. Firstly, 
emulating the protocols from Farazi, et al. [62] and John, et 
al. [63], the DNaseI hypersensitivity mapping was completed 
on 125 cell-types [49]. Then, the datasets were sequenced 
and mapped, allowing maximum two mismatches. Only the 
sequence reads that map uniquely to the genome and the 
data were sorted using the algorithm by Boyle, et al. [64] 
to achieve DNaseI hypersensitive sites localization. In this 
study, they had successfully discovered 578,905 DHSs with 
high correlations (R>0.7) to at least one promoter from the 
1,454,901 distal (>2.5kb from transcription start site) DHSs 
pool from 79 diverse types of cells, with the impressive 
outcome of extensive map of candidate enhancers with the 
specific genes they regulate. 

Semi-Supervised Machine Learning (Co-
Training)

The semi-supervised machine learning (or co-training) 
encompasses both labelled and unlabeled datasets in its 
algorithm. This type of machine learning is a powerful 
approach to enlarge the labelled dataset via the inclusion 
of its own accurate predictions and therefore explains for is 

suitability in times when labelled dataset is lacking [63]. 

The McEnhancer is the one tool that utilizes semi-
supervised machine learning to predict enhancer targets 
together with the other co-regulated genes using third-order 
interpolated Markov chain model (IMM) via expectation 
maximization (EM) algorithm in Drosophila melanogaster 
[64]. First, the McEnhancer was trained on common 
sequences from labelled (known) DHS-gene pairs before 
predicting, at one expression at a time, the unlabeled DHSs 
with analogous subsequences. Then, The McEnhancer-
determined enhancer sets were used to train the sparse 
k-mer-based logistic regression classifiers for expression 
patterns predictions. One big advantage McEnhancer have 
over other tools is that it is able to assign multiple target 
genes to a single enhancer which in turn had improved 
the resolution of expression classification in a spatial and 
temporal manner [65,66]. 

The Future of Enhancer Target Prediction Tool

The current progress in the field of enhancer target 
predictions had evolved a big step since the discovery of 
the first enhancer back in the year 1981. Although the 
available tools are scarce in amount to date, these tools 
presented in this paper have provided insights as essential 
milestone towards the complete mapping of enhancers and 
its targets within the gnome in the future. The CISMAPPER 
had proven that its one-of-its-kind approach had achieved 
greater accuracies as compared to the commonly used 
feature (genomic distance). Moreover, the McEnhancer 
had achieved yet another breakthrough with its prediction 
powers extending towards one-to-many enhancer-promoter 
pairs prediction, and further provide greater resolution for 
huge in vivo regulatory datasets that does not have complete 
alignment with one another. Hariprakash, et al. [67] have 
listed all the computational biology solutions pertaining 
to enhancers-target gene pairs identification in their 
mini review. Moore, et al. [68] further described a curated 
benchmark of enhancer-gene interactions with regards to 
enhancer-target gene prediction methods. These guidelines 
and benchmark will greatly aid in curating all enhancer-gene 
outcomes for future comparisons and improvements. 
 

As the outcome of these research were to ultimately 
be being able to accurately predict enhancer targets in any 
cell context, the enhancer target prediction tools will have 
to improve in terms of their robustness where multiple 
enhancer target features are included for predictions. For 
instance, the PETModule can be further improved with the 
addition of features such as CTCF locations. Besides, the 
dynamic regulation of enhancers under specific conditions is 
also deemed essential to make this tool more robust in terms 
of wider application spectrum [69-73]. All in all, it is both 
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as important to include more enhancer target features into 
the prediction and also to conduct experimental validations 
following computational predictions. 
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