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Abstract 

Energy and Environment play a key role for the sustainability and survival of a society. At present these are the two 

major concerns in current world. Rapidly increasing energy demands and decreasing healthy environmental conditions 

pose a serious threat to future generations of humanity. The quest to find clues for prediction of future environment from 

past information and search for alternate energy sources has already begun. In this regard, the photosynthetic marine 

micro algae and the organic compounds produce by them are considered as the potential targets to address the 

environmental challenges. Poly-unsaturated long chain ketones (PULCAs) are such compounds produced by few species 

of marine Haptophyta. These compounds are identified to be unique lipids which are considered as potential biofuel 

precursors. The PULCAs are generally called as alkenones and are comprised of more than 40% of total lipid content in 

haptophyte species like E.huxley and Gephyrocapsa. Current paper provides a brief overview on these compounds. 
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Introduction 

Due to over use of natural oil reserves there is a 
significant increase in CO2 levels as well as simultaneous 
decrease in the climatic conditions and energy reserves. 
This situation is leading towards energy crisis and global 
warming. In order to prevent further damage, the 
scientific community is searching for alternate solutions 
from the photosynthetic organisms. Life on earth has 
proliferated from simple single celled microbes in oceans 
to multi-cellular complex beings on land, water and air. 
Out of which marine photosynthetic microbes lie in the 
primary line of evolution. Marine phytoplankton evolved 
through a various symbiotic processes to thrive in 

response to environmental conditions and contributed to 
global bio-geochemical cycles [1].  

 
Till date a wide range of algal species were discovered 

and are used as standard models for several research 
purposes in food, fuel and pharma industries. Some of 
them are of significant importance to scientific 
community because of their unique biochemical 
mechanisms and carbon containing products [2-4]. 
Especially, certain lipids like fatty acids, sterols, alcohols, 
Oxylipins etc., produced by these photosynthetic marine 
microbes like Cyanobacteria and diatoms are very useful 
in geophysical, food, biofuel and pharma industries. Such 
lipid deposition from plants and algae in the layers of 
earth from the past million years triggered formation of 

Review article 

Volume 2 Issue 5 

Received Date: September 21, 2018 

Published Date: October 23, 2018 
DOI: 10.23880/jenr-16000143 

 

 

https://medwinpublishers.com/JENR
mailto:bakku.kumar.kb@u.tsukuba.ac.jp
https://doi.org/10.23880/jenr-16000143


Journal of Ecology & Natural Resources  

 
Bakku RK. Promising Polyunsaturated Oils from Marine Haptophyta. J Ecol & Nat Resour 
2018, 2(5): 000143. 

    Copyright© Bakku RK. 

 

2 

crude oil reserves. However, these are being depleted 
rapidly. Currently there is a high demand to explore 
renewable and environment friendly energy sources to 
prevent increasing CO2 levels and global temperature. 
Therefore photosynthetic micro algal lipids are 
extensively studied for this purpose.  

 
Alkenones are one such unique lipid molecules 

produced by marine haptophyta. These lipids are widely 
considered as potential subjects for addressing 
environmental challenges. The haptophytes that produce 
alkenones are widely distributed in the open oceans and 
are considered to be dominant species that can survive 
through diverse nutrient fluctuations [5-7]. These 
organisms have been thrived in earth’s waters over a 
million years through adverse environmental conditions. 
These alkenone producing organisms played a key role in 
contributing to earth’s early biosphere through oxygen 
production, carbon and sulfur cycling [3,4,8]. The 
alkenones, produced and deposited into sea sediments, by 
these organisms are also identified to have significant 
paleo-climate information [5]. In addition, they are also 

assumed to be potential biofuel precursors. Various 
studies on alkenones have been carried out till date to 
elucidate their applications. This article is aimed to give a 
brief over view on the alkenone research with regard to 
their biological role and biofuel potential. 
 

Poly-Unsaturated Long Chain Ketones 
(Pulcas) 

Alkenones are unique neutral lipid molecules first 
discovered in the marine sediments [9,10]. The 
characteristic features of these unique lipids are very long 
carbon chains (C36-C40), ~(2 to 4)-trans double bonds and 
a methyl or ethyl ketone functional group at one end as 
shown in figure 1 [10,11]. Alkenones along with other 
related compounds like alkenes and alkenoates are 
collectively referred to as polyunsaturated long chain 
alkenones (PULCAs). Only few marine haptophytes 
namely Emiliania, Gephyrocapsa, Isochrysis, Tisochrysis 
and Chrysotila are known to produce these components 
[5,6,12].

 
 

 

Figure 1: Figure showing structure of C37:3 alkenone with its trans-double bonds and a methyl ketone group. 
 

 
The alkenone composition, distribution and double 

bond number varies depending on algal species, habitat 
and the growth conditions like temperature, salinity and 
nutrient availability. For example, alkenones with two to 
three double bonds and C37-C39 carbon chain length are 
most commonly identified in Emiliania and Gephyrocapsa 
thriving in marine and lacustrine environments [5,9-15]. 
While, C35-C36, C38:4-C37:4, and C40-C41 type alkenones were 
also produced by these haptophytes and specifically 
identified in sediments of black sea, cold waters, sulfate-
rich lakes and hyper-saline environments [16-20]. The 
trans-unsaturation of these molecules is identified to be 
linearly proportional to temperatures and therefore they 
are used as proxies to estimate ancient sea surface 
temperatures, SST [21-23]. These compounds are mainly 
useful in geophysical studies to estimate paleo 
temperatures and paleo CO2 [24-26]. Because of such 

wide distribution, unique structural features and 
applications, alkenones are considered useful 
macromolecular components in haptophytes.  

 
Besides being widely accepted as biomarkers for 

temperature and CO2, alkenones are also assumed to be 
potential biofuel precursors. Several studies on the 
characteristics of alkenones speculated their biological 
role as neutral lipids, buoyancy regulators or structural 
backbones [10,27-31]. Their role as storage lipids like 
triacylglycerol (TAG) is highly under debate and yet to be 
explored. It was also observed that, TAGs are comparably 
produced in very low amounts compared to alkenones in 
haptophytes like E.huxleyi and Gephyrocapsa [6,32-34]. 
Alkenone unsaturation being temperature dependent and 
their role as storage lipids was speculated to have evolved 
through natural selection [30]. Furthermore, the 
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mechanisms involved in their biosynthesis, trans 
unsaturation were also explored and identified to be 
downstream of fatty acid biosynthesis and elongation 
pathways [36-39]. In the process of unraveling their 
biosynthesis mechanisms, identification of the 
localization of alkenones was also studied. The abundance 
of alkenone composition from membrane fractions was 
found in endoplasmic reticulum and coccolith producing 
compartments, while fluroscence and nutrient/light 
stress studies showed present of nutral lipids in 
chloroplasts and lipid vesicles [40-41]. Despite such 
extensive studies on characteristics and applications of 
alkenones, their biological role and complete mechanism 
of synthesis are still unknown.  

 
Among all alkenone producing haptophytes, E.huxleyi 

is the major producer of alkenones and a dominant 
marine coccolithophore [9,10,33,42]. Most studies are 
carried mainly using E.huxleyi. Studies on carbon flow in 
alkenone producing haptophytes showed that 15-20% of 
the carbon is incorporated in to lipids among which 63-
75% is in the form of neutral lipids [27]. The carbon 
content is around 48-64% under nutrient replete 
conditions/ normal conditions and tends to increase 
under nitrate or phosphate limitations [29,30,41,43]. 
Recently, nitrate limited experiments of Bakku et al. 2017 
[44] also showed alkenones as major C storage pools 
under N- limitation in E. huxleyi as a significant increase 
in %organic carbon (15% Ca. to 27% Ca.) was observed 
upon transferring the cells from N-replete to N-limited 
conditions.  

 
Initial studies on lipid class composition of 8 isolates 

of E. huxleyi showed that neutral lipid composition can 
vary from 38.3% to 67.3% of total lipid content during log 
to stationary phases [33]. Alkenones in some strains of 
E.huxleyi and Gephyrocapsa are known to occupy nearly 
50-60% of the total lipid content and can increase upto 
73-77% under stressed conditions [33,44,45]. In 
Isochrysis sp. though comparatively less, nearly 14% w/w 
of biodiesel are found to be alkenones [46]. Additional 
studies on lipid bodies of haptophytes like Tisochrysis 
lutea indicated that nearly 70-74% of its lipid body is also 
composed of alkenones [42]. Furthermore it was 
observed that using techniques like pyrolysis or 
butenolysis alkenone can be converted into short chain 
hydrocarbons like n-alkanes and jet-fuels [48-50]. Also, 
alkenones are considered to be stable molecules against 
photo oxidation due to embedded trans double bond 
geometry [36]. Having less unsaturation number, 
resistant to photo oxidation and absence of glycerol 
backbone are the advantages of these molecules over 
TAGs. However, alkenones cannot be used as a direct 

biofuels due their high boiling points (>60˚ C) compared 
to TAGS [46,50,51]. Therefore, though the use of 
alkenones as biofuels could be advantageous technical 
difficulties in conversion of alkenoenes into industry level 
biofuels still persist. Identification of alkenone 
biosynthesis pathways and subsequent regulation 
towards production of short chain hydrocarbons could be 
an alternative way for efficient biofuel synthesis. 

 

Conclusion 

Renewable organic compounds that can serve as 
multipurpose resources are very useful for research and 
industry. Especially lipids that can serve as both 
biomarkers and biofuel molecules are rare and valuable 
sources for environmental studies. The PULCAs like 
Alkenones fit in this category perfectly. Alkenones are 
already well known for their applications in 
paleothermometry and paleo-CO2 analysis. On the other 
hand their potential to be used as biofuels is yet to be 
explored fully. At the moment though their biosynthesis 
mechanism is not known, their role as major storage 
lipids is confirmed. Despite their high melting points, 
their accumulation in haptophyte strains like E.huxleyi is 
very convincing for modeling towards large scale 
production. Future research on revealing alkenone 
biosynthesis pathways could help in directing towards 
synthesis of jet-fuel range hydrocarbons. In addition, 
cultivation of such haptophytes in open oceans could be 
the next step towards biofuel production.  
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