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Abstract 

Signal Transducer activator of transcription 3 (STAT3) is involved in cell signaling of neuronal stem cell proliferation, 

angiogenesis, and cell cycle progression. The jury is still out, about the effects of the STAT3 pathway activation after 

ischemia and if inhibiting or inducing this pathway leads to better functional recovery and neuronal stem cell 

proliferation to the penumbra. This review will better understand the role of STAT3 after focal ischemic stroke. 
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Introduction 

Signal Transducer activator of Transcription 3 
(STAT3) is a transcription factor and an intracellular 
signal transducer activated by cytokines, growth factors, 
and receptor- or nonreceptor-tyrosine kinases [1,2]. 
STATs are involved in many biological events as diverse 
as embryonic development, programmed cell death, 
organogenesis, innate immunity, adaptive immunity and 
cell growth regulation in organisms ranging from slime 
molds to insects to humans [1]. Tyrosine phosphorylation 
of STAT3 at Y705 is required for STAT3 activity. After 
phosphorylation at Y705, dimerization, and nuclear 
translocation, STAT3 binds to the promoters of target 
genes and finally induces gene expression [2]. 

 
In this review, we will discuss the importance of 

STAT3 and its potential neuroprotective strategies and 
regenerative targets that may expand to it being a 
molecular therapeutic target after ischemia. 
 

STAT3 after Focal Ischemia 

In developed countries, stroke is the leading cause of 
death and disability and beyond the immediate 4–6 h 

after an acute ischemic stroke, there is no known therapy 
that improves outcomes for this health disparity 
[3]. Numerous pathological events such as necrosis, 
apoptosis, edema, and altered cellular signaling occur 
after cerebral ischemia as well as after subdural 
hematomas [4]. Previous studies have shown that the 
STAT3 pathway is activated in in vitro and in vivo 
experimental models of stroke [5,6]. Although most 
studies show an increase in phosphorylation of STAT3 
after stroke, there are conflicting data whether this 
pathway activation leads to improved neurological 
recovery. 

 
Several groups have found that treating animals with 

hypoxic preconditioning, rhEPO, or other novel 
compounds increased the activation of the STAT3 
pathway and improved neurological recovery after 
experimental stroke [7,8]. Furthermore, it has shown that 
when STAT3 phosphorylation is blocked with inhibitors 
AG490 or WP1066 (an analog of AG490) they found that 
cell death markers or functional performance were 
worsened [1,7-9]. The latter suggest that treatments that 
activate the STAT3 pathway after experimental stroke 
may lead to improved functional performance and 
decreased cell death [1]. 
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On the contrary, Satriotomo, et al. (2006) found that 
the JAK2 inhibitor AG490 or a STAT3 siRNA after 
experimental cerebral ischemia decreased infarction 
volume, neuronal damage, apoptosis, and GFAP-positive 
cells [1,10]. These results suggest that activation of the 
STAT3 pathway leads to decreased cerebral recovery and 
that blocking this pathway leads to better neurological 
outcomes. Due to the controversial outcomes of STAT3 
activation, further studies are required to determine the 
functional effects of STAT3 pathway activation following 
cerebral ischemia. Our group studies the effects of STAT3 
on focal ischemia using neuronal STAT3 KO mice to 
determine if this pathway is indeed beneficial to the 
outcomes of regenerative repair, angiogenesis, and 
functional recovery. 
 

STAT3 and Neuroprotection  

Previous reports have also shown STAT3 may be 
involved in neuroprotection against various cerebral 
ischemia and brain insults [11-15]. After focal ischemia, 
reactive oxygen species (ROS) are produced in 
mitochondria. These ROS induce mitochondrial-
dependent apoptotic pathways [16-18]. These ROS, are 
removed by manganese-containing superoxide dismutase 
(Mn-SOD or SOD2), a primary cellular defense antioxidant 
enzyme specific to superoxide [16]. STAT3 regulates 
transcription of the Mn-SOD gene in the mouse cerebral 
cortex and cortical neurons [14]. Another study used 
Rice-Vannucci model of severe hypoxia induced insult in 
postnatal (P7) mice, neuronal deletion of STAT3 reduced 
forebrain cell death, tissue loss, microglial, and astroglial 
activation [19]. This data implies that STAT3 plays a 
critical role and may contribute to neonatal hypoxia 
induced-brain damage via Tyr705 phosphorylation [19]. 
Therefore, STAT3 is thought to play a necessary role in 
neuroprotection after focal ischemia.  
 

Human clinical application to STAT3 

Upon infection, inflammatory cytokines trigger cell 
signaling in local stem cells or differentiated cells [20]. 
Among other transcription factors, this eventually leads to 
the activation of STAT3 that mediates regenerative gene-
expression programs in human disease. These genes 
include growth factors, cell-cycle stimulators, cell death 
inhibitors, and genes promoting dedifferentiation, cell 
motility and migration as suggested after stroke and after 
an immune response to infection. STAT3 has regenerative 
properties that has been extensively studied in 
hepatocyte cells in the liver [21-23] and has been proven 
to induce cancer [24]. 

Adaptation to other Diseases Targeting 
STAT3 Molecules 

STAT3 regulates a wide spectrum of biological 
programs, including inflammation, tissue regeneration, 
cell proliferation, cell survival, cellular differentiation, 
angiogenesis, chemotaxis, and cell adhesion [20-24]. 
STAT3 plays a role in the latter processes by transcribing 
the expression of a variety of genes in response to specific 
external signals sensed by cell-surface receptors [23]. All 
cell types and tissues do not have the same expression 
patterns of these STAT3 receptors and their signaling 
cascade mediators. Nonetheless, STAT3 activation is 
highly context-dependent, which can often lead to 
controversial data [20]. The latter is true for the role of 
STAT3 in inflammation, since it can promote or suppress 
this process in many diseases [20-24]. 
 

Conclusion 

Ischemic stroke has been shown to activate the STAT-
3 pathway and increase expression of STAT-3 related 
genes involved in cellular proliferation, differentiation, 
survival and inhibitory neurotransmission. However, 
there are conflicting reports on the effects of blocking the 
STAT3 pathway. Some have reported worsened 
neurological recovery when blocking this pathway, while 
others have demonstrated advantageous effects. Further 
investigation is needed to determine if it is feasible to 
selectively block only certain genes downstream of the 
STAT-3 pathway to prevent the deleterious effects 
associated with activation of this pathway while 
maintaining the beneficial neuroprotective effects of 
STAT-3 pathway activation. 
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