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Abstract

The field of environmental and microbial ecology is undergoing a revolution, having ramifications in microbiology, ecology, 
and ecosystem research. The tremendous accumulation of molecular data is revealing a vast diversity of microbial groups, as 
well as unique microbial functions. Plants are part of a varied ecosystem in their natural habitat, which includes numerous and 
different microorganisms in the soil. Some of these microbes, such as mycorrhizal fungi and nitrogen-fixing symbiotic bacteria, 
have long been known to improve plant performance through enhancing mineral nutrition. A substantial quantity of data on the 
structure and dynamics of plant microbiota, as well as the functional capacities of isolated community members, is currently 
available. The adoption of appropriate delivery techniques and formulations, as well as smart, knowledge-driven microbe 
selection, is required. Plant-microbe interactions may now be studied in greater depth thanks to modern biotechnology. In this 
review, we look at the interaction between the soil, the host, and the microbial population, as well as their involvement in plant 
sciences, to see what we can learn about the ecosystem function of plants and symbiotic microorganisms, which will help us 
to improve agricultural techniques.      
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Introduction

Several studies have shown that soil microorganisms 
and plant–microbe interactions can improve environmental 
quality and reduce global warming. Soil microbial community 
composition changes between compartments and levels, 
posing a serious problem in soil ecology. Microbes, especially 
plant growth-promoting microorganisms, are vital in 
agriculture (PGPMs). The following three mechanisms 
contribute to plant growth - (i) PGPMs that operate as 
biofertilizers (like nitrogen-fixing bacteria and phosphate-
solubilizing bacteria) help plants absorb nutrients [1], (ii) 
Phytostimulators (microbes that produce phytohormones, 

including Azospirillum) can directly stimulate plant 
development [2,3], (iii) Plants are protected from 
phytopathogens by biological control agents (Trichoderma, 
Pseudomonas, and Bacillus) [4–6].

However, as a metaorganism, plants have only lately 
been identified as having their own specific and intertwined 
microbiome [7]. A plant’s ecology is influenced by 
interactions with microbes that live in or on the plant. In 
ecosystem functioning, the roles of both plants and their 
accompanying microorganisms have been recognized, but 
the specific mechanisms are still unclear. Being unable to 
move, plants have co-evolved with microorganisms, which 
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have resulted in a variety of processes that influence the 
outcome of their interactions [8]. In Ciccazzo’s work [9], a 
certain bacterial population is selected by a plant species. 
The long-term effects of soil microbes on a plant species’ 
coexistence are defined by changes in the plant’s relative 
performance in response to changes in the microbial 
composition [10,11]. A variety of volatile compounds can be 
produced by plant growth-promoting rhizobacteria (PGPR), 
and these compounds are specific to bacterial species and 
other closely related species [12-14]. Some of these bacterial 
volatiles can boost plant development, decrease disease-
stimulating induced systemic resistance (ISR), or antagonize 
phytopathogens [15], nematodes, or insects [16,17]. In this 
review, we will explore understanding the environmental 
and ecological impacts of soil microorganisms which will 
help farmers improve their methods while also helping us 
to appreciate the significance of microbial communities in 
plant biology.

Environmental Impact of Soil 
Microorganisms

Some soil microorganisms known as mycorrhiza, as well 
as plant-associated bacteria (rhizospheric or endophytic), 
can help their plant hosts with nutrient supply, which is vital 
not only for optimal plant development in normal conditions, 
but also for plant survival in hostile settings [18]. Endophytic 
bacteria can support plant growth through a variety of 
mechanisms, including biological nitrogen fixation, tolerance, 
and the existence of pollutant degradation pathways. The 
biomass obtained from those plants and soil microbes can be 
a valuable resource for producing bio-energy as alternative 
fuels such as biodiesel, bioethanol, or biogas, which are 
thought to slow down global warming. As a result, it’s possible 
that this occurred as part of the compatible reaction during 
mycorrhization. During times of world change, mycorrhiza 
may be useful in overcoming xenobiotic or environmental 
stress [18,19].

Furthermore, knowing changes in ecosystem 
environmental characteristics is important on a worldwide 
basis. On the one hand, more precise understanding would aid 
in improved environmental management and the protection 
of environmental structures, reducing damages such as 
soil contamination and erosion in ecosystems subjected to 
pollution, drought, or other environmental stressors. Locally, 
sustainable usage of environmental species is required for a 
balanced economic and ecological growth, especially in light 
of global warming. In recent years, subsidies for research 
in both ecosystems have been substantially decreased, 
exacerbating the problems of providing incentives to 
conserve environmental quality and assure functional 
microbial behaviour [18,19]. With such a powerful impact 
on the environment, it is critical to better understand the 

mechanisms involved in order to control it. The impact 
of environmental management on soil microorganisms is 
critical for improving our understanding of how to maintain 
such ecosystems’ quality. Moreover, soil structure is a part 
of the environment’s ecology, and it can be changed by the 
following factors:
• Plant community structure and vegetation cover are readily 
damaged and difficult to recover.
• Humus and/or nutrients, particularly P (Phosphorus), are 
frequently low in soils.
• Nutrients and organic matter in the soil are frequently 
depleted and quickly lost.
• There are temperature extremes that are seasonal and/or 
diurnal.
• Precipitation is usually strong and erosive, and it falls in 
short bursts.
• There is a chance of strong winds and bushfires, among 
other things.

Scientists conducted two long-term trials in a 
Mediterranean habitat, demonstrating that inoculation 
with indigenous soil microorganisms improved not only 
plant establishment but also soil fertility and environmental 
quality [20]. Soil nitrogen (N) content, organic matter, and 
hydrostable soil aggregates have all grown as a result of 
this symbiosis, as has nutrient transfer among plant species 
associated with natural succession. The introduction of target 
indigenous plant species in conjunction with a managed 
community of microbial systems was found to be a successful 
approach for assisting the recovery of low vegetative 
habitats. The diversity of soil microbe species relevant to 
the setting of the current project is first discussed in this 
chapter, followed by a review of the proposed mechanisms 
of soil structure formation [21]. Microbial symbioses 
provide a biofertilizing and environmental stability role 
because colonized plants are better able to receive nutrients 
and tolerate environmental challenges. In the ecosystem, 
colonized plants’ greater uptake of soil minerals means that 
fertilizer treatments can be reduced significantly while crop 
yields remain comparable or even higher.

Ecological Impact of Potential Soil 
Microorganisms 

Plants have evolved to include a diverse range of 
microorganisms that play critical functions in plant growth 
and health. A substantial quantity of data on the structure 
and dynamics of plant microbiota, as well as the functional 
capacities of isolated community members, is currently 
available (Figure 1). There is a pressing need to put microbial 
innovations into practice, both because of the intriguing 
functional potential of plant microbiota and because of 
existing crop production issues [22]. Plants actively recruit 
microorganisms from the soil/rhizosphere, the phyllosphere, 

https://medwinpublishers.com/JENR/


Journal of Ecology and Natural Resources
3

Das K, et al. Environmental and Ecological Impact of Soil Microorganisms in Plant Sciences. J 
Ecol & Nat Resour 2022, 6(2): 000273.

Copyright©  Das K, et al.

the anthosphere (the external environment of flowers), the 
spermosphere (the exterior of germinated seed), and the 
carposphere (the external environment of fruit) [23]. The 
majority of root microbiota is horizontally transported, 
meaning it comes from the soil environment, which 
comprises a varied range of microorganisms dominated 
by Acidobacteria, Verrucomicrobia, Bacteroidetes, 
Proteobacteria, Planctomycetes, and Actinobacteria. Bacteria 
can also be spread vertically via seeds. Seeds are also a major 
source of microorganisms, which grow in the developing 
plant’s roots [24,25]. Plants provide unique ecological niches 
for soil microbes, which invade the rhizosphere, roots, and to 
a degree above ground sections [26]. Similarly, Kawasaki, et 
al. [27] reported that the Brachypodium distachyon (a model 
for wheat) rhizosphere was dominated by Burkholderiales, 
Sphingobacteriales and Xanthomonadales, while the bulk 
soil was dominated by the order Bacillales. Organic acids, 
amino acids, fatty acids, phenolics, plant growth regulators, 
nucleotides, sugars, putrescine, sterols, and vitamins, as well 
as other root exudates, have been shown to impact microbial 
composition near roots [28].

However, above-ground plant tissues such as vegetative 
foliar parts, leaves, and floral parts provide distinct settings 
for endophyte and epiphyte diversities, although the 
ecology of endosphere and phyllosphere bacteria differs 
significantly [29]. As a result, different microorganisms 
are found in the endosphere and phyllosphere at the genus 
and species level, such as Pseudomonas, Sphingomonas, 
Frigoribacterium, Curtobacterium, Bacillus, Enterobacter, 
Acinetobacter, Erwinia, Citrobacter, Pantoea, and 
Methylobacterium as predominant genera [30,31]. Wallace, 
et al. [32] investigated the maize leaf microbiome across 300 
different maize lines and discovered that sphingomonads 
and methylobacteria were the most common species. They 
also discovered that environmental conditions influenced 
the phyllosphere’s microbial composition. Pseudomonas 
and Enterobacteriaceae were found to be the most common 
taxa in apple flowers, according to Steven, et al. [33]. 
Pseudomonas was also reported to be the most prevalent 
genus in various investigations on apple, almond, grapefruit, 
tobacco, and pumpkin blossoms [34]. Seed-associated 
bacteria have only lately been studied, with Proteobacteria, 
Actinobacteria, Bacteroidetes, and Firmicutes being the most 
common [35,36]. Seed microbiotas have a connection to soil 
microbiota, as well as those of flowers and fruits [37,38].

Functions and Factors Affecting 
Microorganisms

The term “core plant microbiome” refers to 
microorganisms that are intimately connected with a 

particular plant species or genotype regardless of soil or 
environmental circumstances [39]. A variety of biotic and 
abiotic variables determine the microbial composition of 
any plant organ. External environmental conditions such 
as climate, pathogen presence, and human practices [40] 
influence microbiota of above- and below-ground plant 
parts, whereas soil pH, salinity, soil type, soil structure, soil 
moisture, and soil organic matter and exudates [41] are most 
relevant for belowground plant parts (Table 1). Beneficial, 
neutral, and harmful microbes make up the plant microbiome. 
Plant growth-promoting bacteria (PGPB) can enhance plant 
growth in a number of ways, both directly and indirectly. 
Auxin, cytokinin, and gibberellin are phytohormones 
produced by certain PGPB that affect plant growth by 
modifying endogenous hormone levels in interaction with a 
plant. Furthermore, some PGPB can secrete an enzyme called 
1-aminocyclopro pane-1-carboxylate (ACC) deaminase, 
which lowers ethylene levels in the plant. Pseudomonas spp., 
Arthrobacter spp., Bacillus spp., and other bacteria have 
been found to boost plant development by producing ACC 
deaminase [42] (Table 1).

Phytotoxic chemicals, proteins, and phytohormones 
produced by some bacteria can induce illness symptoms. 
Pseudomonas syringae, for example, is a well-known plant 
pathogen with a wide host range that includes tomato, tobacco, 
olive, and green bean. Erwinia amylovora is another well-
known pathogenic bacterium that causes fire blight in fruit 
trees and ornamental plants. Many significant crop diseases, 
such as potato and banana, are linked to Xanthomonas 
species, Ralstonia solanacearum, and Xylella fastidiosa [43]. 
In terms of above- and below-ground ecological diversity in 
a terrestrial ecosystem, global temperature change can have 
an impact on plant ecology. The terrestrial plant community 
affects the microbial ecology of the soil, which can lead to 
changes in ecosystem function. Plant species cohabitation 
can be governed by resource partitioning and sharing of soil 
resources. Root symbionts have been discovered to improve 
nutrient uptake efficiency and let the host to persist in low-
nutrient environments, thereby contributing directly to the 
competitive exclusion of other plants [44].

Soil is a complex ecosystem that hosts bacteria, fungus, 
protists, and animals, despite the fact that plant physiologists 
sometimes see it as only a source of nutrients for plants [45]. 
Plants engage in a wide range of interactions with these soil-
dwelling creatures, spanning the entire ecological spectrum 
(competitive, exploitative, neutral, commensal, mutualistic) 
(Figure 1). Most interaction investigations in modern plant 
science have focused on reducing pathogenic impacts such 
herbivory and infection [46] or reducing abiotic stress 
conditions [47,48].
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Sl. No. Organisms involved Type of 
interaction

Compounds/
mechanisms involved Findings References

1

Moniliophthora roreri 
and  

Trichoderma 
harzianum

Phytopathogen– 
endophyte

T39 butenolide, 
harzianolide, 
sorbicillinol

Compounds dependent on the 
phytopathogen 

presence and were spatially localized 
in the 

interaction zone.

[49]

2
Trichoderma 

atroviride and 
Arabidopsis sp.

Endophyte– 
plant

Indole acetic acid-
related indoles

Plant root colonization promotes 
growth and 

enhances systemic disease resistance 
in the 

plant by endophytes.

[50]

3
Xylella fastidiosa and 

Methylobacterium 
mesophilicum

Phytopathogen– 
endophyte Hydroxamate type

Genes related to energy production, 
stress, 

transport, and motility were 
upregulated in the 

phytopathogen, but genes related to 
growth 

were downregulated.

[51]

4
Burkholderia gladioli, 

B. seminalis, and 
orchid

Phytopathogen– 
endophyte– 

plant

Extracellular 
polysaccharides;  
altering hormone 

metabolism

By using extracellular polysaccharides 
and by 

altering hormone metabolism, the 
endophyte 

strain probably interacts with the 
plant, as was 

suggested by genomic analysis.

[52]

5

Bradyrhizobium 
diazoefficiens and 

Aeschynomene 
afraspera

Symbiont–plant C35 hopanoids

C35 hopanoids are essential for 
symbiosis and 

are related to evasion of plant defense, 
utilization 

of host photosynthates, and nitrogen 
fixation.

[53]

6 Stachybotrys elegans 
and Rhizoctonia solani

Mycoparasite– 
host

Trichothecenes and 
atranones

Mycoparasite-induced alterations in 
Rhizoctonia 

solani metabolism, growth, and 
development 

by the production of mycotoxins. The 
biosynthesis of many antimicrobial 

compounds 
by R. solani was downregulated.

[54]

7
Candida albicans 
and Pseudomonas 

aeruginosa

Microbial 
community Quorum sensing

The Pseudomonas aeruginosa QS 
system may 

block the yeast-to-hypha transition or 
activate 

the hypha-to-yeast reversion of 
Candida 

albicans. Farnesol produced by C. 
albicans 

downregulates the QS system of P. 
aeruginosa.

[55]
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8
Vibrio fischeri and 

fishes or 
squids

Symbiont–fish Quorum sensing

In symbiotic association with fishes 
and squids, 

the auto-inducer molecule reaches a 
threshold 

and luminescence genes are activated.

[56]

9
Rhizobium 

leguminosarum 
and plants

Symbiont–fish Quorum sensing

The quorum-sensing system in these 
bacteria is 

related to different functions: 
nodulation efficiency, 

growth inhibition, nitrogen fixation, 
and plasmid transfer.

[57]

10
Xanthomonas or 

Xylella and 
grapevines or citrus

Pathogen–host Quorum sensing

Quorum-sensing signaling molecules 
control 

the expression of virulence factor as 
well a s 

biofilm formation.

[42]

11 Pantoea stewartii and 
Zea mays Pathogen–host Quorum sensing

Quorum-sensing mutants of Pantoea 
stewartii 

were not able to disperse and migrate 
in the 

vasculature, consequently decreasing 
the 

disease.

[58]

12
Pseudomonas syringae 

and 
tabacco and bean

Phytopathogen– 
plant Quorum sensing

Quorum-sensing system allows this 
bacterium 

to control motility and 
exopolysaccharide synthesis 

essential on biofilm formation and 
leaves 

colonization.

[59]

13

Streptomyces 
coelicolor and 

other Actinomycetes 
spp.

Microbial 
community

Prodiginines, 
ctinorhodins,  

coelichelins, acyl-
desferrioxamines,  

and other compounds

The 227 compounds differentially 
produced in 

the interactions were unique.
[60]

14
Aspergillus nidulans 

and Streptomyces 
rapamycinicus

Microbial 
community Aromatic polyketides

Activation of fungal secondary 
metabolite 

genes that were otherwise silent led 
physical 

interaction between the 
microorganisms. The 

actinomycete triggered alterations in 
fungal 

histone acetylation.

[61]

15 Pseudomonas sp. Microbial 
community

Pyoverdines 
(siderophore)

Pyoverdines act as signaling 
molecules, activating 

a cascade that results in the 
production 

of several virulence factors. It is 
essential to 

infection and biofilm formation.

[62]
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16 Burkholderia sp., 
Rhizopus sp., and rice

Symbiont 
phytopathogen 

plant

Rhizoxin, bongkrekic 
acid,  

enacyloxins

In the absence of the endosymbiont 
the fungus 

does not form spores. The phytotoxin 
rhizoxin 

is the causal agent of rice seedling 
blight produced 

by the endosymbiont; fungus induces 
the growth of the endosymbiont.

[63]

17
Vibrio sp. and diverse 

marine bacteria 
strains

Microbial 
community

N,N-bis-(2,3-
Dihydroxybenzoyl) 

-Oserylserine:exogenous 
siderophore

Siderophores and iron-regulated 
outer membrane 

proteins produced by marine bacteria 
and other species only in the presence 

of exogenous 
siderophores.

[64]

Table 1: Recent Studies of Microbial Interaction.

Figure 1: Interactions among plants, microbes, and soil with the microbial activity.

Soil Improvement for the Plant with 
Microorganisms

To be genuinely effective in an agricultural setting, 
proposed growth-promoting strains must be shown to be 
able to be re-inoculated onto plants, colonize the rhizospheric 
niche successfully, and then mediate nutrient mobilization 
that improves plant development. Plant–microbe interaction 
assays can be used to examine prospective strains for their 
capacity to stimulate plant growth and nutrient absorption 
(Figure 1) [65]. Plant growth stimulation by microbial 
mobilization of alternative nitrogen sources has also been 
reported, as evidenced by greater yield in plants treated with 
bacterial strains [66,67]. Sustainable agriculture has grown 
in popularity in recent years, necessitating new technology 
advancements to limit the usage of environmentally hazardous 

chemical fertilizers and pesticides. Several research have 
focused on plant probiotics as an alternative soil fertilization 
source; their application in agriculture enhances nutrient 
availability and conserves field management while causing 
no harmful consequences [68] (Table 2).

Many biogeochemical processes are mediated by soil 
microflora, with some species influencing organic matter 
and soil pollutant biodegradation (rhizoremediators) as 
well as abiotic stress tolerance [69,70]. Environmental 
pollution levels have continuously increased in tandem with 
industrial growth. Efforts to restore polluted soil have been 
made, however traditional hazardous chemical treatment 
approaches are both excessively expensive and damaging 
to soil microbiota [71]. Furthermore, Cadmium, chromium, 
copper, lead, mercury, nickel, zinc, and other heavy metals are 
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the most common inorganic pollutants [72]. To rehabilitate 
polluted soil, however, an environmentally beneficial and 
low-cost method has been used. Plant species capable of 
collecting heavy metals are used in phytoremediation for area 

recovery. The plant’s ability to tolerate huge concentrations 
of pollutants without compromising its biomass is a limiting 
factor for this technique’s success [73].

Sl. No. Microbial Agents Nutrient Cycling Soil Structure

1 Microflora (fungi, bacteria, 
actinomycetes)

Catabolize organic matter; 
mineralize and immobilize 

nutrients.

Produce organic compounds that bind 
aggregates; hyphae entangle particles 

onto aggregates.

2 Microfauna (Acarina, Collembola)
Regulate bacterial and fungal 

populations; alter nutrient 
turnover.

May affect aggregate structure 
through interactions with microflora

3 Mesofauna (Acarina, Collembola, 
enchytraeids)

Regulate fungal and microfaunal 
populations; alter nutrient 

turnover; fragment plant residues.

Produce fecal pellets; create biopores; 
promote humification.

4 Macrofauna (isopods, centipedes, 
millipedes, earthworms, etc.)

Fragment plant residues; 
stimulate microbial activity.

Mix organic and mineral particles; 
redistribute organic matter and micro-
organisms; create biopores; promote 
humification; produce fecal pellets.

Table 2: Influences of soil biota on soil processes in ecosystems [70].

Also Metal-tolerant microorganisms, particularly PGPR, 
have been examined for their ability to bioaccumulate metals 
in contaminated settings, which improves metal uptake and 
stimulates plant development. The major mechanism of 
bioremediation is microbe-plant association, which leads to 
soil purification and plant development [74].

Future Development of Application in Plant 
Microbe Interaction

Understanding the connections between plants and 
microbes, as well as microbes and microbes, will be useful 
in the future as a regulating microbiome for reducing disease 
incidence and increasing gross plant yield. In the future, a 
well-studied plant-microbe alliance could assist enhance 
crop output at a low cost, potentially leading to another 
“Green Revolution.” 

Since people began to farm and were no longer nomads, 
plants have been an important element of our diet. Since 
then, the globe has been faced with the constant issue of 
feeding an ever-increasing population. Microbes’ role in 
plant-microbe interactions has been extensively researched 
during the last decade [75,76]. Extensive research suggests 
that utilizing beneficial bacteria is a superior long-term 
strategy for increasing crop productivity, which will play 
a key role in disease transmission and management [77]. 
Transcriptomics, proteomics, and metabolomics, as well as 
bioinformatics, have all been used extensively in plant abiotic 
stress research [78]. The proteomics approach has been 
widely used to analyze plant protein profiles in response to 

abiotic challenges, which could lead to the development of 
new stress tolerance strategies [79]. Another technique for 
studying the collection of metabolites found in microbial 
communities is microbial metabolomics [80]. Infections 
and their emergence have posed a serious danger to food 
security, agricultural practices, and the conservation of food 
species, and understanding the emergence of new pathogens 
and their significance has become a key job [81].

Conclusion

Plant microbiota and their interactions are extremely 
complex, and a variety of factors influence how communities 
form and function. Plant-associated microbes have a big 
impact on the health and performance of their hosts. Attempts 
to use beneficial bacteria in the field, on the other hand, have 
failed to reliably boost crops. Plant-symbiotic microbial 
community interactions, ecological repercussions of plant-
associated microorganisms, and plant-microbial metabolic 
dynamics are all poorly understood at the moment. More 
light will be shed on the intricacy of the metabolic potentials 
of soil microbial communities and their value to the soil 
ecosystem as DNA-sequencing tools evolve and become 
more accessible to various working groups. The introduction 
of genomic techniques has greatly aided our understanding 
of plant-bacterial interactions, yet genomic approaches are 
still insufficient to fully explain plant-pathogen interactions. 
The effect of these alterations on soil biology is still unknown 
and needs to be investigated further. The fundamental 
question is still how the impact on taxonomic groups relates 
to implications on soil microbial communities’ functional 
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capacities.

Moreover, Plants rely on the metabolic activities 
of soil microbes to gain access to refractory soil-borne 
nutrients. Given the environmental harm caused by existing 
fertilization processes, optimizing plant–microbe nutritional 
interactions is a current research goal for more sustainable 
agriculture systems. The mechanisms driving the formation 
of the plant microbiome and its modification in response to 
plant nutritional status, on the other hand, are exceedingly 
complicated and difficult to predict. This understanding 
could help to guide the extremely promising techniques to 
using microorganisms for more sustainable plant nutrition 
in a mechanistic way. However, there is still a huge gap in 
understanding when it comes to a sound theory of plant–
microbe interactions.
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