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Abstract

Quantum computer introduces a novel approach to process information. In quantum information processing, the law of 
quantum mechanics is applied to solve many practical computational problems. Classification is one such problem that can 
be resolved efficiently with the gate model quantum computer. There are several types of classifiers available in quantum 
domain, such as- variational quantum classifier (VQC), Quantum Support Vector Machine (QSVM) with Kernel Approximation, 
Hybrid Quantum Neural Network (QNN) etc. However, in this study, the mathematical similarities between VQC and classical 
support vector machine (SVM) and the components of the VQC are analyzed to optimize the performance of the classifier. 
For the convenience of the study, publicly available datasets, such as- IRIS dataset and Breast cancer dataset, are used in 
the experiments. IRIS dataset is brought into play for the testing and breast cancer dataset dimension reduced by Principle 
component analysis (PCA) is for validity test of the optimized VQC. After studying the VQC components in detail, it is found that 
the optimized VQC outperforms some of the classical machine learning algorithms or sometimes works as similar as classical 
SVM. The optimized VQC algorithm classifies IRIS dataset with 100% of accuracy and PCA dimension reduced Breast cancer 
dataset with 90% of accuracy. All of these studies are conducted with the help of Qiskit- an open-source software development 
kit (SKD) which is developed by IBM. So, the quantum device is considered to be ideal in every experiment.
        
Keywords: Variational quantum classifier (VQC); Quantum Computing; Quantum Machine Learning (QML); Classification; 
Qiskit; Quantum Circuit

Introduction

Quantum machine learning (QML) is an area of study 
where quantum computing and machine learning (ML) are 
intermingled to define and solve various real-life problems 
[1]. In quantum computing, computation is performed 
by utilizing the phenomenon of quantum mechanics [2]. 

Machine learning deals with the feature space of the empirical 
data to find generalized patterns and insights with the 
help of algorithms and statistical models without explicit 
instructions. In supervised machine learning settings, binary 
classifiers classify unknown data into two classes, y ∈ [−1, 
1] based on what they learn from training instances {(x1, 
y1), (x2, y2),........,(xn, yn)}, where y ∈ [−1, 1] [3]. At first, the 
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dataset of the problem is encoded in machines and is sent 
to the functions. The similarity is measured between the 
actual labels and the classified labels. Finally, the models are 
optimized by changing the hyper-parameters of the function 
that approximates the classes or labels. The linearly separable 
data is very straightforward and easy to classify. However, 
the real-life dataset, such as IRIS data sets, breast cancer data 
sets, Pandas datasets, etc., are not linearly separable. So, the 
kernel trick is applied to take the data to a higher dimensional 
feature space. But when feature space is getting larger, kernel 
function estimation becomes very expensive. Quantum 
computer offers a solution to this problem. With controllable 
quantum phenomena, there is a promise of achieving 
computational speed-ups through quantum algorithms [4]. 
Another phenomena is the similarity of the mathematical 
structure of the classical and quantum classifier. Moreover, 
the quantum feature map takes a feature vector to the 
Hilbert space automatically. So, kernel trick is unnecessary in 
quantum approaches. However, this is the Noisy Intermediate-
Scale Quantum (NISQ) Technology era, where there are only 
less than 100 qubits in a quantum processor [5]. So, some 
scalable solutions are needed to be found for the current 
QML problems. Hence, hybrid quantum-classical architecture 
approaches are often taken to come up with solutions. One of 
the approaches contains a variational quantum circuit with 
a measurement operator and cost function. The variational 
quantum circuit are used to encode the data into the quantum 
circuit and tune the hyper parameters with rotation gates, 
Rx, Ry and Rz [6,7]. The cost function measures the similarity 
between the resultant label of the circuit and the actual label 
[8]. It also updates the parameters of the variational circuit. 
This process of updating the circuit hyper-parameters to 
train the circuit to recognize the correct label is often known 
as optimization. The optimization process of classifiers often 
gets stuck in local minima. The main goal is to avoid the local 
minima and to reach the global minima [8]. Only then the 
optimum hyper-parameters can be obtained for the quantum 
circuit. These optimal hyper-parameters ensure better 
solutions to the classification problems. With these ideas in 
mind, the experiments were conducted on the IRIS datasets. 
Some quantum classifier models are already proposed to 
address this classification problem. However, the training and 
testing accuracy were very poor and unstable. So, the circuit 
and the optimizer are not having the right hyper-parameters 
or the existing approaches get stuck in local minima. In this 
study, some experiments are performed to optimize VQC, and 
are tested on IRIS data set and breast cancer data set. The aim 
is to create an optimized quantum classifier that performs 
better or similar to the existing machine learning algorithm.

Related Works

The fundamental approach to classification problems 
with quantum computers is to encode the data with 

unitary gates, use some parameterized circuits, perform 
measurement operators and apply the cost function to update 
hyper-parameters of the machine learning algorithm [8]. In 
this approach, the training data sets were encoded with many 
different techniques. The parameterized circuit has CNOT 
and Rx, Ry, and Rz gates and measurement is performed on 
the first qubit [9]. A gradient descent optimizer is used to 
optimize the hyper-parameter of the parameterized circuit 
[9]. Another approach is using QuClassi architecture. In 
this method, a two-dimensional dataset can be encoded in 
the qubits. In the first qubit or controlled qubit, Hadamard 
operations are applied. On the rest of the four qubits, Ry and Rz 
gates are implemented. In this approach, the parameterized 
circuits are applied on different qubits with a SWAP circuit 
for optimization process. The measurement is performed 
on the controlled qubit. This model is quite successful [10]. 
In this study, Dr. Ying Mao, Dr. Qiang Guan, and others have 
got almost 95% accuracy while they were working with 
IRIS dataset. The third approach is to build Hybrid QNNs. 
Here, a combined classical and quantum neural networks 
is implemented for classification [11]. This model needs 
a lesser number of qubits. However, from the experiment 
with the MNIST data set, this model performances is 
quiet unstable. Quantum classifier architecture of Tensor 
flow works better than some classical machine learning 
algorithms. This architecture was applied to CIFAR10 dataset 
and found it to be effective [12]. However, the performance 
is not stable. In another experiment, 67.5% of accuracy was 
obtained. Aside from those, the ensemble method can be 
implemented to solve multiclass classification problem. In 
this method, multiple physical devices are combined and 
are tried to solve a multiclass classification problems [13]. 
However, this needs the collaboration of multiple physical 
quantum systems or technologies to solve a multiclass 
problem. Another problem is that not all physical devices 
perform the same. So, the performance of the ensemble 
method is very unstable and inefficient. Transfer learning 
with quantum computer is another quantum approach to 
resolve classification issues. But in one of the experiments, it 
is found that there is an over fitting problem. [14] Moreover, 
in some of the cases, Deutsch-Josza circuit is implementing 
along with classification circuit. Moreover, Dr. Caiwen Ding 
has proposed a QF-MixNN solution [15].

Mathematical Modeling of Classification 
Problem in Classical Setting

A dataset is given ( ) ( ) ( ){ }21 21, , , ....., ,n nx y yx x y
  

 
where x  is d-dimensional vector representing the numbers 

of features for algorithm and ( )iy 1, 1∈ + −  for binary 
classification problem. w  is another vector perpendicular to 
the decision line and x  is a vector that shows a new data 
point. Now, to find out whether x  is in the +ve or –ve side, x  
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have to be projected onto w to determine its location. If x+


 
data points are for label, yi= +1 and x−



 data points are for 
label, yi= -1 and b is a parameter, the equations for correctly 
classified data points are [16]-

+ + ≥
 

. 1w x b                                            (1) 

. 1w x b− + ≤
 

                                            (2)

Now, for yi = (+1, -1), (1) and (2) equations can be rewritten 
as following [16]:

( . ) -1 0iy w x b+ = 

                                       (3)

where, the maximum width of the decision boundary is 
2

w
 

[16]. The support vectors lie at the edge of the boundary 
[17]. So, there are two constraints. One is equation (3) and 
another is the width of the boundary. If Lagrange multiplier 
is used, then the minimization of the result will be as below 
while honoring the both constraints. The primal form of the 
equation can be written as [18]:

                      (4)

Mathematical Modeling of Classification 
Problem in Quantum Setting

It is important to understand whether a VQC is 
mathematically or theoretically capable to solve any 
classification problem. In the classical machine learning 
setting, it has been seen that SVM is a linear classifier. 
Support vectors helps to determine that boundary between 
two classes. According to the equation (4), classification 
issues are just convex optimization problems which can 
be solved effectively with classical machines. But in this 
study, quantum algorithm is to be implemented to check 
whether the algorithm performs better than classical ones 
or any quantum advantage can be achieved. In this section, 
the theoretical analysis of the classification problem is 
discussed and it is shown that VQC is also a linear classifier 
like SVM. In the procedure, at first the dataset is needed to 
take data points to the higher dimensional vector space, 

( ) :  x zφ∅ →  where, ∅ is non-linear [19]. Then, the dataset 
is linearly classified. To ensure this, the following equation is 
to be found out [19],

      ( ) ( ) ( ) [ 1, 1]f z z w ZW zθ θ θφ φ+=< >∈ − +       (5)

At first, consider that [19],                                 (6)
Where, is optimized over the Hamiltonian or the 
observable against the feature vectors. Now,

                                 (7) 

 is a 1- dimensional scalar number whose 
trace is equal to the number, itself.

                          (8)

So,                              (9)

It is also known that, (z) (z)φ φ><  is a density matrix in 
2n×2n  complex vector space which is another representation 
of (z)φ  or mathematically,

(z) (z) (z)φ φ φ≈ ><                                (10)

                                  (11)

If  and (z)φ  can be decomposed as following [19]:

                      (12)

                      (13)

Let,                           (14)

So, it can be written,                   (15)

Similarly,       ( ), 4

1( ) , P P
(2) nnZ Z α αα

φ φ
∈

= ∑ < >                       (16)

which can be written as [19]:

                           (17)

So, equation (11) can be rewritten as following [19]:

           
(18)

This can be combined and written as [19]:

            
 (19)
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Or,                                   (20)

It is known that [19],

                         (21)

So,                                                  (22)

This 		                                             (23)

If threshold, [ ]b 1,1∈ − , [ ]b 1, 1∈ − +  +then, it can be written 

[19], 

( )4

1( ) ( )
(2) nnlabel Z sign h Z bαα

θ φ
∈

 
= + 

 
∑               (24)

which is equal to the solution, 

( ) ( ( ) )Label Z sign f Z bθ= +                         (25)

( )x f zθ≈ , as x data point is mapped to ( )f zθ , so,

†( ) ( )Label Z sign w x b= +                             (26)

Now, the primal form of the equation can easily be 
worked out just like classical SVM algorithm as from equation 
(3) and (4) by solving for the optimal separating hyper plane 
given as following:

( )2
min
, ,

1 . 1
2a w b p i i i iL w y W x bα  = −∑ + − 

 

             (27)

Classification with Variational Quantum 
Classifier Model

At first, the unitary gates ( )U θ  are applied to the initial 
states of the quantum circuit, | 0 n>  in a quantum variation 
classifier (VQC). The parameters of ( )U θ  depend on the 
dataset of the problem. A variational circuit block ( )W θ  is 
added. This block is tuned, tested and optimized. After that, 
the circuit is measured on Z-basis. The result is a string of bit, 

{ }0,1 nz∈ . Then, the string of bits is mapped to a cost 
function, C. The actual labels are compared with the labels 
from the circuit. After that, optimizer is used to optimize the 
circuit. The optimizer feed ( )W θ  with a new set of 
parameters. The circuit is rerun and from that the expectation 
value, ( ) ( ) ( ) ( )† z zp x W M W xϕ θ θ ϕ=

 

   is estimated. These 

values are again mapped to { }1, 1C∈ + −  [20]. The circuit is 
rerun again and again until the optimum hyper parameters 

are reached. This algorithm is applied on the test data to 
check the performance of the algorithm. This time the 
parameters of ( )W θ  are fixed. 

In classical ML algorithm, the dataset, X, is imported 
into a ML model. The model takes the data and provides a 
prediction or answer. The model depends on the parameter,
θ . Then there is a cost function which compares the 
performance of the model with actual answer. The optimizer 
optimizes the algorithm performance by updating the 
parameter of the ML model. The model is then applied to test 
dataset to check the performance of the algorithm. In QML, the 
classical ML model portion is replaced by a quantum circuit. 
This circuit consists of encoding and parameterized circuit. 
The measurement operator in the architecture is to obtain 
the output of the circuit. Before training a quantum circuit, 
the classical data are needed to be encoded into the quantum 
states. To do that, the unitary transformation gates are used. 
So, the raw data, dx∈  is mapped to a new quantum state, 
( ) ( ) ( )2  nx xφ φ ⊗><
 

 ò  [21]. In this state, dimension of all 
linearly inseparable data is increased and mapped to higher 
dimensional Hilbert space. A variational quantum circuit  is 
added to the new quantum state, ( ) ( ) ( )2  nx xφ φ ⊗><

 

 ò  
[21]. This variational circuit depends on the parameter, θ . 
After that, the circuit measurement is performed on Z-basis 
and  is calculated. [21] This is the result of 
labeling bit string { }0,1 nz∈ based on the Boolean function 

{ } { }: 0,1 1, 1nf → + − , So, if  is the label of the 
dataset, then probability of measuring one or another label 
is[4]:

( ) ( ) ( ) ( ) ( )†1 (1 (
2yp f z x W fW xϕ θ θ ϕ= + < >

 

 

     
where, 

( ){ }0,1 nz
f f z z z

∈
= ><∑                             (28)

The circuit diagram of this VQC model is shown below Figure 
1:

Figure 1: Architecture of VQC [20].

The equation (28) is needed to be solved and it is 
required to answer what is zp  and if 1 pzp is +  or, 1 p− . The 
result is compared with the actual label to determine the 
performance of the quantum model. 

A threshold has to be defined after that. Various 
optimization techniques are used to update the parameters 
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of VQC model. These updated parameters are fed to the 
( )W θ  block and are tuned and tested as long as optimum 

θ  values for the classifier are not found. However, the 
values of θ  are also depended on the unitary gates in the 
circuit. As Hilbert space is a complex vector space, some 
parameters of ( )W θ  is not accessible by quantum gate 
operation [22]. So, only the subset of those parameters 
can only be accessible to optimize the equation. It is also 
import to remember that the more parameter the circuit 
can access, the better the expressivity of the quantum 
circuit [23,24]. But better expressivity does not mean that 
the circuit is going to be performing better in classification 
or any machine learning problem [8]. Moreover, it can be 
seen that the computation is basically done by quantum 
circuit. Cost analysis and optimization are done by classical 
machines. So, the quantum classifier is like a hybrid loop. 
This loop optimizes the circuit performance. 

Components of Variational Quantum 
Classifier

Variational quantum classifiers have several essential 
components. In this experiment, only three of them are 
analyzed. They are: 
1. Encoder, 2. Ansatz circuit and 3. Optimizer

Encoder circuit

Encoder circuit is a kind of circuit that prepares quantum 
states according to the feature values of a data point [8]. The 
experiments are run with three types of encoders. They are 
PauliFeatureMap circuit, Z Feature map circuit or one form 
of angel encoding and ZZ FeatureMap circuit or higher order 
embedding [25].
1.	 PauliFeature Map circuit: Pauli matrices are I, X, Y and 

Z matrices. The Pauli variables contain these quantum 
gates. This kind of feature mapping transfers the raw 
data, dx∈  to

 
, 

where S describes the connection between data points 
[25]. This circuit can be repeated in operation. For Pauli 
string P0=Z and P0,1=ZZ (k=2) and P0=Z(k=1), the Pauli 
Feature Map circuit can be drawn as below Figure 2.

Figure 2: Example of Pauli Feature Map circuit [25].

2.	 Z Feature Map: Z Feature map is the first order Pauli-Z 
evolution circuit [25]. It is a sub-class of Pauli feature 
map [25]. The input data is needed to be fed to the 
customized U1 gates. In the figure below, a 3-qubit Z 
feature map circuit is illustrated in Figure 3.

 

Figure 3: Three-qubit Z feature map circuit [25].

3.	 ZZ Feature Map: ZZ Feature Mapping is an example of 
higher order feature mapping circuit. It is the second 
order Pauli-Z evolution circuit [25]. To employ this feature 
mapping model, the features of the data are required to 
be encoded in the qubit and the values of the U1 gates are 
assigned for each qubit. A two qubit, single repetition ZZ 
Feature Map circuit is shown in the Figure 4 below:

Figure 4: Two-qubit ZZ Feature map circuit [25].

Ansatz Circuit

The Ansatz or parameterized circuit is one of the essential 
parts of the variational quantum classifiers. It comprises of 
rotation gates and CNOT gates. The rotation gates are used 
to tune and to adjust the hyper parameters of the quantum 
circuit and to improve the classifier performance. When the 
optimum hyper parameters are found from the optimizer, 
those parameters are fed to the quantum circuit. CNOT 
gates ensure entanglement between the encoded data. This 
entangling layer is used to ensure that the states of the qubits 
can get interacted and the quantum computational advantage 
can be achieved. Moreover, simulating entangled qubit or 
ansatz is a hard task for classical computers. An example of a 
parameterized circuit is illustrated in the figure 5 below. This 
ansatz has been implemented in this study.

Figure 5: Architecture of Ansatz circuit [25].

Optimizer

Optimization is the process in which the differences 
between predicted label and target label are studied. The 
hyper parameter of the VQC circuit is tuned and the loss 
function is tried to reduce to find an optimum boundary 
between two classes. In VQC, classical computers are used 
to optimize the performance of a quantum classifier. The 
hyper parameter for the optimizer are fed to the circuit and 
the hybrid loop continues in the process of optimization. 
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Five different types of optimizers are elaborately analyzed 
in this study. They are Adam and AMSGRAD optimizers 
(ADAM), Analytic Quantum Gradient Descent (AQGD) with 
Epochs optimizer, Constrained Optimization By Linear 
Approximation optimizer (COBYLA), Sequential Least 
SQuares Programming optimizer (SLSQP) and Truncated 
Newton (TNC) optimizer [25].

Experimental Analysis and Results

As discussed earlier, the quantum classifier is a linear 
classifier. However, VQC classifier cannot classify more than 
two labels at a time. So, only two classes were extracted out 
from the given dataset at first. There are other approaches 
in QML which may have the chance to classify more than 2 
classes at a time. In Figure 6, sample images of IRIS dataset 
are shown:

Figure 6: Sample images of IRIS dataset [26].

At first the structure of the problem is analyzed by 
visualizing the given data. In the Figures 7 and 8, IRIS dataset 
is plotted which contains three classes based on the patel 
length and patel width. In this setting, setosa and versicolor 
can be easily separated with linear boundary but it is hard to 
classify versicolor and virginica linearly.

Figure 7: Plotting three classes of IRIS dataset based on 
patel length and patel width.

Now, the pattern of data has to be checked based on the 
other two properties of IRIS dataset. They are- sepal length 
and sepal width. Here, it can be seen that virginica and setosa 
can be easily classified but it is hard to classify versicolor and 
virginica. Figure 8 shows the distribution of the three classes 
based on these two properties of IRIS dataset.

Figure 8: Plotting three classes of IRIS dataset based on 
sepal length and sepal width.

It can be understood from Figures 7 and 8 that there are 
four properties or features of each data. If VQC algorithm 
should be run on this dataset, it should be ensured that the 
qubit states alter with the values of the features of each data 
point [8]. As the data is four dimensional, four quantum bits 
are required [8]. The test dataset sample of IRIS dataset is 
shown in Figure 9 below:

Figure 9: Test dataset sample (two classes) of IRIS dataset.

Encoder Circuit Analysis

The most significant part of QML algorithm is the 
encoder circuit. In many of the cases the encoder circuit 
determines how the algorithm will perform. So, it is really 
necessary to choose right encoder with correct depth to solve 
classification problem with quantum computers. From the 
discussion of the feature map circuit, it can be found out that 
all the feature mapping circuits, such as- Pauli Feature map, 
Z Feature map and ZZ Feature map, start with H operation. 
After that, the rotation operations are applied as per values 
of the data. 

These three types of feature mapping circuit are 
experimented along with five types of optimizers. The 
parameterized circuit remains the same. The results are 
shown below as in the Table 1,
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Encoding Circuit Performance on Test Dataset
ADAM AQGD COBYLA SLSQP TNC

PauliFeatureMap 70% 70% 75% 80% 80%
ZFeatureMap 95% 70% 100% 100% 100%

ZZFeatureMap 70% 70% 75% 80% 80%

Table 1: Performance of Different Encoding Circuit.

From the table 1, it can clearly be said that Z feature map 
has performed better than all the other types of circuit and 
the classifier has the similar results from PauliFeature map 
and ZZFeature map circuits.

With ADAM optimizer, it can be seen that only Z 
feature map reaches 95% accuracy where as other feature 
maps remain as 70% of accuracy. If AQGD optimizer is in 
operation, the feature map circuits have no impact on the 
overall performance of the algorithm. Again, with Z feature 
map and COBYLA optimizer, the accuracy result is 100% 
and other feature maps have got 75% accuracy. SLSQP and 
TNC optimizers have performed the same. In these cases, Z 
feature map is appeared to be the best option.

Encoding Circuit 
Depth Performance on Test Dataset

ADAM AQGD COBYLA SLSQP TNC
1 95% 70% 100% 100% 100%
2 75% 90% 100% 100% 100%
3 70% 80% 75% 80% 85%

Table 2: ZFeature Map Encoder Performance.

From the Table 2, it can be understood that when Z 
Feature map is implemented with circuit depth 1 and 2, the 
accuracy is 100% with COBYLA, SLSQP and TNC optimizer. 
Up until now, three optimizer works with high accuracy when 
the dataset is lower dimensional (In this case, dimension of 
data =4) by using Z feature map and circuit depth is 1 and 2. 
But encoder depth 1 does not always provide good results. 
All in all, when there is a quantum circuit with depth 2, then 
this configuration have the best possible results for almost all 
classifiers. The performance analysis of the encoder circuit 
(Z Feature Map, Depth=2) is illustrated in table 2. It can be 
seen that overall depth 2 circuit provides the best results.

 Anstaz Circuit Analysis

Ansatz is one of the major components of VQC. It is very 
important to choose right ansatz and its depth to solve any 
classification problem. In this study, the ansatz shown in 
figure 5 is used. The circuit depth is changed to check the 
overall performance of the classifier. The Pauli Feature Map 
is not mentioned here, because it works as similar as ZZ 

feature map in the experiments. The detail analysis of VQC 
performance is shown in the bar chart below (Figure 10).

Figure 10: Bar diagram of VQC performance (ZZ Feature 
map and Ansatz depth 2).

Figure 11: Bar diagram of VQC performance (Z Feature 
map and Ansatz depth 2).

In figure 10, performance analyses of the bar diagram of 
VQC (ZZ Feature map and Ansatz depth 2) are illustrated. In 
this setting SLSQP and TNC perform better than all the other 
combination. The classification accuracy is 80% in these 
settings. When ansatz depth is 2, lesser resources are needed 
to build that quantum circuit. However, one might think that 
more circuit depth makes more parameter shift. Hence, it is 
probable to get better result if the circuit depth is increased. 
However, more parameter does not necessarily ensure better 
performance of Ansatz in the operation of VQC. Figure 10 
and 11 demonstrates this clearly. But two optimizers, SLSQP 
and TNC always perform very well with any kind of circuit 
depth. However, TNC is always working better than SLSQP. 
This will be shown in validity test. With Z feature map (depth 
2), the ansatz (depth=2) and TNC optimizer, the optimum 
parameters of the ansatz of this classification problem are:
opt_params [6.47534855 -1.11200387 3.34001454 
5.37309336 2.57341714 3.70006039 5.29063351 
-0.27497174 5.58621329 2.66845098 4.9311402 
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4.31889917 4.76254717 4.40608396 4.81049839 
0.03453597]

Optimizers Performance Analysis

In this study, five types of optimizers are used. They 
are- ADAM, AQGD, COBYLA, SLSQP and TNC. Here, their 
performance will be analyzed. The encoder, the depth of 
encoder, ansatz and its depth, are chosen already. Now, it is 
time to identify the efficient optimizer. All this optimizer is 
tried out one after another and the cost function are analyzed. 
It is important to note that the attempt is to reduce the 
cost function in the classical or quantum machine learning 
algorithm. 

It is also important to check how optimizers perform in 
different circuit settings. So, at first, VQC settings are tested 
with ZZ feature map and ansatz circuit and their depth 1. 
The result of the classifier performance is shown in the 
Figure 12.

Figure 12: Optimizer performance (ZZ Feature map and 
ansatz with depth 1).

Figure 13: Performance analysis of optimizer (Z Feature 
Map, Ansatz and both depth=2).

The Figure 12 shows that AQGD and ADAM optimizers 
obtain 70% of accuracy; COBYLA’s accuracy is 75% whereas 
SLSQP and TNC are having 80% classification accuracy. 
So, from another experiments as shown in figure 13, it can 
be determined that SLSQP and TNC work better. So, that 
optimizer can be applied in the algorithm to get the optimum 
performance from the classifier.

In this study, it can be seen that ADAM optimizer’s 
performance is the lowest. It is about 70%. AQGD has got 95% 
accuracy. However, as it is expected that COBYLA, SLSQP and 
TNC have performed better. They could classify the dataset 
with 100% of accuracy. The optimum value obtained from 
the cost function is-
opt_value 0.010566505534852494

However, it is needed to be ensured that the classifier 
works similarly in other datasets. Hence, in the following 
part, the validity of this result will be checked to understand 
the best arrangement of the VQC algorithm.

Results of this Classification Problem

The results below shows actual label and probabilities 
of getting a certain label. If the probability of a label is more 
than 0.5, the classifier assigns that label to the respective 
data point. 
Data point:[6. 2.7 5.1 1.6]
Actual: versicolor, Probabilities [{‘setosa’: 0.20542, 
‘versicolor’: 0.79458}]
----------------------------------
Data point:[5.5 2.3 4. 1.3]
Actual: versicolor, Probabilities [{‘setosa’: 0.20327, 
‘versicolor’: 0.79673}]
----------------------------------
Data point:[5.9 3.2 4.8 1.8]
Actual: versicolor, Probabilities [{‘setosa’: 0.25627, 
‘versicolor’: 0.74373}]
---------------------------------- Data point:[4.8 3. 1.4 0.3]
Actual: setosa, Probabilities [{‘setosa’: 0.80014, ‘versicolor’: 
0.19986}]
----------------------------------
Data point:[5.1 3.8 1.9 0.4]
Actual: setosa, Probabilities [{‘setosa’: 0.69402, ‘versicolor’: 
0.30598}]
----------------------------------
Data point:[5.1 3.4 1.5 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.79133, ‘versicolor’: 
0.20867}]
----------------------------------
Data point:[4.6 3.6 1. 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.61392, ‘versicolor’: 
0.38608}]
----------------------------------

https://medwinpublishers.com/JENR/
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Data point:[5.5 2.4 3.8 1.1]
Actual: versicolor, Probabilities [{‘setosa’: 0.21275, 
‘versicolor’: 0.78725}]
----------------------------------
Data point:[5.4 3.7 1.5 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.90318 ‘versicolor’: 
0.096818}]
----------------------------------
Data point:[5.1 3.5 1.4 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.78484, ‘versicolor’: 
0.21516}]
----------------------------------
Data point:[5.7 3.8 1.7 0.3]
Actual: setosa, Probabilities [{‘setosa’: 0.75274, ‘versicolor’: 
0.24726}]
----------------------------------
Data point:[4.8 3.1 1.6 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.78109, ‘versicolor’: 
0.21891}]
----------------------------------
Data point:[6.1 2.8 4.7 1.2]
Actual: versicolor, Probabilities [{‘setosa’: 0.24934, 
‘versicolor’: 0.75066}]
----------------------------------
Data point:[5.5 4.2 1.4 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.78450, ‘versicolor’: 
0.21550}]
----------------------------------
Data point:[5.5 2.6 4.4 1.2]
Actual: versicolor, Probabilities [{‘setosa’: 0.17460, 
‘versicolor’: 0.82540}]
----------------------------------
Data point:[5. 3.6 1.4 0.2]
Actual: setosa, Probabilities [{‘setosa’: 0.74801, ‘versicolor’: 
0.25199}]
----------------------------------
Data point:[6.8 2.8 4.8 1.4]
Actual: versicolor, Probabilities [{‘setosa’: 0.16903, 
‘versicolor’: 0.83097}]
---------------------------------- Data point:[6.7 3. 5. 1.7]
Actual: versicolor, Probabilities [{‘setosa’: 0.21376, 
‘versicolor’: 0.78624}]
----------------------------------
Data point:[4.8 3. 1.4 0.1]
Actual: setosa, Probabilities [{‘setosa’: 0.78789, ‘versicolor’: 
0.21211}]
----------------------------------
Data point:[5.4 3.4 1.5 0.4]
Actual: setosa, Probabilities [{‘setosa’: 0.74545, ‘versicolor’: 
0.25455}]
**********************************
Correctly classified = 100.0 % of test data

Comparative Analysis of VQC Algorithm

One of the fundamental questions of QML study 
is whether it is possible to obtain results better than 
classical ones or similar to classical algorithm. So, the 
study is also conducted to know whether it is possible to 
get any quantum advantage if VQC algorithm is applied 
to solve classification problem. For that reason, it is also 
important to try different classical ML algorithm to solve 
this classification problem. The study has found that SVM 
performs better than other types of ML algorithms. KNN 
has 96.67% of accuracy, DT has 93.33% whereas SVM has 
got 100% of accuracy shown in Table 3.

KNN SVM DT
Classical ML 

Algorithm 
Performance

96.67% 100% 93.33%

Table 3: Comparative Analysis of Classical ML Algorithms.

It has been found that VQC circuit has got 100% 
accuracy. However, it is important to understand that VQC is 
simulated with Qiskit SKD. So, the environment, that needs 
to be considered to run these experiments, should be ideal.

Validity Test of this study

Until now the performance of VQC has been tested by 
applying it on IRIS dataset. It is not sensible to say that this 
will work for other classification problem as well, unless 
this VQC setting can be tested on the other types of similar 
dataset. So, some other types of dataset have been taken into 
account to test the validity of the result.

Figure 15: PCA dim. Reduced Breast Cancer Dataset.

Now, the PCA dimension reduced breast cancer dataset 
is shown in Figure 15. It can be seen that there are some 
overlap in the data. These were the training dataset. The 
classical and quantum machine learning algorithm is 
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needed to be trained first to analyze the performance of 
VQC.

Breast cancer dataset is reduced in dimension to two 
for computational advantages. PCA algorithm has been 
used to take the best two features of the data to solve this 
classification problem. At first, the classical ML algorithm 
has been applied to this problem and the result is checked 
with IBM lab document. In IBM lab document, they have used 
a different approach to analyze and solve this classification 
problem. The first part of the table 4 below shows that 

classical SVM has got 85% accuracy and with QSVM, IBM 
has got 90% of accuracy. So, quantum enhanced support 
vector machine performed better than classical algorithm 
for this case. However, the improved version of the optimized 
VQC algorithm is needed to be tried on this dataset. All the 
optimizers have been tried to test and to understand what 
optimizer works better. In the findings, it has been found 
that COBYLA and TNC perform better than the classical SVM 
algorithm. Table 4 illustrates the performance of classical 
and quantum machine learning algorithm.

SVM QSVM
Breast Cancer Analysis 85% 90%

Optimized VQC ADAM AQGD COBYLA SLSQP TNC
Breast Cancer Analysis 50% 85% 90% 50% 90%

Table 4: Performance analysis of Classical and Quantum ML algorithm on other dataset with IBM Lab document [9].

The performance of optimized VQC on PCA dimension 
reduced breast cancer test dataset can be illustrated in the 
Figure 16.

Figure 16: Performance of VQC on PCA dimension reduced 
Breast Cancer Dataset.

From Figure 16, it can be found that there are only 
two data points that are misclassified. Others are classified 
properly. From table 4, it can also conclude that SLSQP does 
not always perform well as claimed earlier. COBYLA also has 
performance issue in some settings as shown in figure 12. 
But TNC optimizer always performs better than all the other 
classifier. So, the TNC optimizer is recommended to build 
this optimized algorithm.

Optimized Algorithm

The optimized VQC classifier is as following:
1.	Data set loading
2.	Distributing train and test dataset xi by Class
3.	Initiating statevectors as per feature space=n

4.	Initializing Z Feature map with depth 2
5.	Initializing RealAmplitude with depth 2
6.	Combining Z Feature map with RealAmplitude
7.	Function for data dictionary
Pass in: parameter, data
Initiating blank parameter dictionary
For i, p ϵ ordering parameters for Z Feature map do
Assigning parameters for each data point
End for
For i, p ϵ ordering parameters for RealAmplitude do
Assigning parameters for each RealAmplitude rotation gate
End for
Return parameter dictionary
8.	  Function assign label 
Pass in: bit string, class labels
For k ϵ bit string list do
hamming weight= sum of all bit string
End for
Defining odd parity
IF Odd parity THEN Return assign label 1
ELSE Return assign label 0	
9.	  Function return probabilities
Pass in: counts, class labels
Initiating dictionary for Assigning labels
For key, item ϵ items count do
Calling assign label function 
Pass in: key, class labels
Calculating total probability of getting one label
End For
Return total calculated probability
10.	 Function Classify
Pass in: data, parameters, class labels
Initializing state vector empty list
For x ϵ data do

https://medwinpublishers.com/JENR/


Journal of Ecology and Natural Resources
11

Fazlul Haque AKM, et al. Optimizing a Variational Quantum Classifier through the Behavior 
Analysis of its Components. J Ecol & Nat Resour 2022, 6(3): 000296.

Copyright©  Fazlul Haque AKM, et al.

Assigning data and parameters by function data 
dictionary
Updating state vectors
Adding updated state vector to empty list
End For
Initializing empty class probability list
For qc ϵ state vector list do
Counting return measurement probability dictionary of 
quantum circuit
Calling return probabilities function
Pass in: Counts, class labels
Adding class probability list
Return class probability list
11.	Function Sigmoid
Pass in: probability list, expected labels
Calculating probability of expected label
IF probability of expected label is close to 1 THEN Assign 0
ELSE IF probability of expected label is close to 0 THEN 
Assign 1
ELSE Calculate and assign 1 / (1 + math.exp(-x))
Return Assign
12.	Function Cost function
Pass In: training input, class labels, parameters, shots number
Initiating training labels empty list
Initiating training samples empty list
For label, samples ϵ training input items do
For samples ϵ samples do
Adding training label to empty training labels
Adding training samples to empty training samples
End For
End For
Calling classify function for the value of probability
Pass In: training sample, parameters, class labels
For i, probability value ϵ enumerate probability values
Calling sigmoid function for calculating Cost
Pass in: Probability, training labels index value
End For
Determine overall average Cost
Return overall average Cost
13. 	Assigning TNC optimizer with maximum iteration= 
100
14.	Creating objective function by calling cost function
Pass In: training input, class labels, parameters
15.	Initiating random parameters
16.	Optimizing parameters by calling optimizer function
Pass In: length of initial parameters, objective function, initial 
parameters

Conclusion

From this study, it can be concluded that an optimized 
VQC can be developed to solve classification problem by 
analyzing the behavior of its components. Z feature map 
should be chosen as the encoder with circuit depth 2. 

The ansatz of this study can be used as the tuning circuit 
which must also have depth 2. Additionally, TNC optimizer 
will help to obtain the best possible results from the VQC. 
This optimized VQC performs similar or better for lower 
dimensional dataset provided that the physical quantum 
computer is ideal or qubits are totally immunized from noise.
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