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Abstract

Stand Density Index (SDI) is a common metric used in forestry to normalize comparisons of disparate size-density relationships 
and evaluate a stand’s relative density to some maximum. Relative density to some maximum is often used to develop thinning 
prescriptions for maintaining a forest’s resilience and productivity. However, evaluation of the size-density relationship is 
fraught with potential for miscommunication given reliance on often differential diameter definitions (size) and common 
truncation of high density stands (density) with small diameters, depending on the objective of the forest biometrician. 
The objective of this paper is to highlight commonly used methods for defining a stand’s mean diameter and the multiple 
approaches to computing stand density index. We explore the traditional definitions of mean diameter and their impact on the 
computation of SDI: 1) arithmetic, 2) quadratic, 3) Reineke’s diameter by summation, and 4) Reineke’s diameter with Taylor 
expansion, as a function of differing diameter truncation methods. Our analysis summarizes the strengths and weaknesses of 
the varying definitional approaches to SDI and emphasizes the need to communicate the objectives for which a particular suite 
of diameter truncation methods and SDI equations are selected.

Keywords: Quadratic Mean Diameter; Reineke’s Diameter; Stand Density Index; Additive Stand Density Index; Taylor 
Expansion

Abbreviations

SDI: Stand Density Index; QMD: Quadratic Mean Diameter; 
AMD: Arithmetic Mean Diameter.

Introduction

Reineke’s stand density index (SDI) was originally 
developed as the relationship between number of trees per 
unit area and the average diameter by basal area [1]. This 
diameter measure used in the original form presented by 
Reineke is known as the quadratic mean diameter (QMD). 
That is the classic definition of a quadratic mean [2] where 

QMD is calculated as the “root-mean-square” and expressed 
as follows:
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Where d is the nth diameter of an individual tree and n 
is the total number of trees. When determining QMD from 
inventory data, it is often necessary to account for expansion 
factors and should be calculated as follows:
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Where d is the nth diameter of an individual tree and TPA is 
the number of trees per acre represented by that tree. QMD 
is equivalent to the diameter of the tree of average basal area 
and can be calculated as follows:
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Where _BA AC  is average basal area per acre, TPA
is average number of trees per acre and 0.005454 is the 
constant relating inches to square feet. The quadratic mean 
diameter is necessarily greater than or equal to the arithmetic 
mean diameter (AMD), as it gives greater weight to larger 
trees. The difference between QMD and AMD grows as the 
stand structure diverges from a tight, unimodal diameter 
distribution of an even-aged stand, to that of a more skewed 
or reverse-J shaped distribution of an uneven-aged stand.

For expressing stand attributes, QMD has both 
mensurational advantages (i.e. the exact relationship to basal 
area) and historical precedent [3]. Reineke developed SDI 
from even-aged stands where variance of diameters was low 
and thus was sufficient for describing ‘average diameter’. The 
original equation of Reineke SDI was the following:

                             10
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                                    [4]

Where TPA is the number of trees per acre, QMD is the 
classic ‘root-mean-square’ diameter and b is the slope of the 
self-thinning line. Reineke found this slope, in the linear form 
of the equation, to be -1.605.

Stage [4] found the disadvantage of SDI in that there was 
no way to describe the contributions of various diameter 
classes of trees in the stand to the total index for the stand, 
and therefore computed SDI as a summation, hereafter 
referred to as SDI*. The summation method computes SDI* 
tree by tree within a stand as follows:
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Where DBHi is the diameter of the ith tree at breast height 
in the stand and b is the slope of the self-thinning line, using 

1.6 as a good approximation. If SDI* is to be calculated via 
the summation method from a stand table containing only 
diameter classes and number of trees, it can be calculated as 
follows:
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Where DBHj is the diameter of the jth diameter class 
in the stand, TPAj is the number of trees per acre in the jth 
diameter class and b is the slope of the self-thinning line, 1.6 
has been a standard approximation. At the plot level, this 
summation formula is used with each “in” tree’s diameter, 
and expansion factor as TPA. The plot total is the summation, 
where the stand total is the average of all plots in the stand.

Zeide [5] describes how the ‘average diameter’ in 
Reineke’s equation is technically neither the quadratic nor 
the arithmetic mean, but rather a function of the slope of the 
self-thinning line, and coined yet another diameter, which he 
called Reineke’s diameter (DR), calculated as:
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Where N is the total number of trees, d is the diameters 
of the ith tree and b is the slope of the self- thinning line, with 
1.6 as a good approximation. In application, this equation, 
like that of the summation SDI, needs to be weighted by 
expansion factors for each tree and should be calculated as 
follows:
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Where TPAi is the number of trees per acre represented 
by the ith “in” tree’s diameter. The Reineke diameter can then 
be used in the classic SDI form in place of QMD, which has 
been shown to be equal to the summation SDI* [6].

Zeide [5] goes on to present another equation for DR, 
developed using the first three terms of Taylor expansion, 
as a function of the arithmetic mean and its variability, 
represented by the coefficient of variation, as the following:

                   ( )
1

21
 1 *

2

b b

R

b
D d C

 −
= + 

  

                                  [9]

https://medwinpublishers.com/JENR/


Journal of Ecology and Natural Resources
3

Heiderman R and Kimsey M. Sensitivity of Stand Density Index to Diameter Calculations and 
Cutoffs. J Ecol & Nat Resour 2024, 8(3): 000381.

Copyright©  Heiderman R and Kimsey M.

Where d  is the arithmetic mean, 𝑏 is the slope of the
self-thinning which should lie somewhere between 1, which 
would produce the arithmetic mean, and 2, which would 
produce the quadratic mean (1.6 is a good approximation 
for b), and C2, which is the squared coefficient of variation 
of the diameter distribution. This form of the DR equation 
is sometimes written without the coefficient of variation 
squared [7,8]. The calculated DR then replaces QMD in 
Reineke’s SDI equation (Equation [4]) to get at a DR derived 
SDI.

Shaw [6] demonstrated the significance which stand 
structure (i.e. shape of the diameter distribution) has on 
the calculation of SDI. Reineke originally developed the SDI 
equation from even-aged stand data with normal diameter 
distributions. The QMD and summation methods produce 
similar results when applied to even-aged stands but as 
the diameter distribution becomes more irregular (greater 
variance about the mean diameter), as found in uneven-
aged or multi-cohort stands, these two calculations diverge. 
Shaw [6] comes to a similar conclusion of that of Zeide [5], 
that using QMD is not “technically” correct and that the 
summation method yields the correct result.

Ducey and Larson [9], when attempting to determine 
if there is a truly “correct stand density index”, concluded 
that the summation and Reineke’s original SDI should be 
considered different indices with different properties. Using 
a two-parameter Weibull function to simulate different 
diameter distributions with equal number of trees, basal 
area and QMD, they showed the summation SDI and Reineke 
SDI are ‘remarkably consistent’ over most of the diameter 
distributions until the distribution becomes heavily 
dominated with small trees.

Curtis [10], using real stand data, demonstrated not 
only how these SDI calculation methods differ with stand 
structure, but how the diameter cutoff of the input data has 
a significant impact as well. He concludes that the minimum 
diameter limit has major effects on calculated density values 
and that in general trees smaller than 1.6 inches, or all trees 
of a clearly distinguishable understory, should be excluded 
from computations.

The overall goal of this analysis is to evaluate the 
impact of various diameter and SDI equations, as well as 
diameter cutoffs, on real forest inventory data, and provide 
context for their impact on assessing relative density of 
some maximum.

Methods

Data

The forests of western Oregon and Washington 
will serve as the study area for this analysis. Due to the 
requirement of the summation SDI and DR equations for 
individual tree information, rather than plot or stand 
level summaries, this analysis utilized data from the U.S. 
Forest Service Inventory and Analysis (FIA) Program from 
Oregon and Washington, resulting in 10,432 records. FIA 
subplot data was summarized to the plot level. Tree level 
information included diameter at breast height (DBH) 
and number of trees per acre (TPA) represented by each 
individual tree.

The FIA dataset was summarized to the plot level under 
three diameter truncations. The first was no diameter cutoff, 
where all trees with associated expansion factors were 
included in plot level summaries. The second was the 1.6 
inches which Curtis [10] suggested as a reasonable cutoff to 
reduce issues associated with very large numbers of small 
trees in the understory. The third cutoff was a larger 5-inch 
cutoff, although subjective, represents a common small 
diameter cutoff within forest inventory.

Calculated Metrics

For each plot record, arithmetic mean diameter (AMD), 
quadratic mean diameter (QMD) and Reineke’s Diameter 
(DR) via the summation method (Equation [8]), as well as DR 
via the Taylor expansion (Equation [9]) using both CV and 
CV2, were calculated. SDI was then calculated utilizing the 
QMD (Equation [4]) and the three methods for Reineke’s 
diameter within the classic SDI form (Equations [8] and [9] 
using both CV and CV2, placed in Equation [4]) as well as SDI* 
calculated via the summation method (Equation [6]). Ratios 
of the various calculations were determined for each record 
under each diameter cutoff.

Results and Discussion

The two diameter cutoffs of 1.6 and 5 inches reduced 
the number of plots from 10,432 records to 10,423 and 
10,285 respectively due to the removal of plots containing 
only small diameter trees. All mean values of the three 
calculated diameters increased and number of trees 
decreased with increasing small tree diameter cutoff (Table 
1). The variability in tree diameters, as indicated by the 
coefficient of variation, decreased with increasing diameter 
cutoff.
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No Cutoff >= 1.6 >= 5
DBH (mean) 8.99 9.68 12.51

DR (summation) 10.06 10.68 13.33
DR (CV2) 10.18 10.79 13.39
DR (CV) 10.52 11.23 14.14

QMD 10.77 11.36 13.89
CV 0.70 0.62 0.43

TPA 404 331 155
SDI 282 274 234
SDI* 244 242 219

SDI (CV2) 252 248 221
SDI (CV) 261 242 252

Table 1: Calculated metrics using the various diameter calculations for the different diameter cutoff scenarios.

The increased diameter cutoff causes QMD and AMD to 
become closer in value. The 50th, 75th and 95th percentiles 
of the ratio between QMD and AMD get lower as the cutoff 
increases (Table 2). With a diameter cutoff of 5 inches this 
ratio stays much closer to 1 with a maximum value of 1.67 
compared to the lower and no cutoffs reaching 2.5 and 3 
times the difference between QMD and the arithmetic mean.

Percentile
Dataset 50% 75% 95% Max

No Cutoff 1.2 1.36 1.7 3.02
>=1.6 1.16 1.29 1.56 2.52
>=5 1.08 1.14 1.27 1.67

Table 2: Ratio of QMD to AMD for the different diameter 
cutoff scenarios.
 

As expected SDI* was always lower than SDI (Table 3), 
with all diameter cutoffs having a median (50th percentile) 
ratio between the summation and the QMD (i.e. SDI*:SDI) 
method of 90% or above. This ratio increased overall as 
the diameter cutoff increased. This finding is in agreement 
with Ducey and Larson [9] who concluded the ratio 
is relatively insensitive to changes to the shape of the 
diameter distribution until the distribution becomes heavily 
dominated by small trees. Forest inventories with a minimum 
merchantability diameter cutoff will decrease sensitivity to 
small trees with large expansion factors and lead to a ratio of 
SDI*:SDI close to 1. This ratio may also be utilized to filter for 
stands of a certain structure. Isaacson [11] used the SDI*:SDI 
ratio to filter for even-aged, pitch pine stands; where data in 
their analysis was restricted to any stand with a ratio greater 
than 0.95.

Percentile
Dataset Min 50% 75% 95%

No Cutoff 0.55 0.9 0.95 0.98
>=1.6 0.57 0.91 0.96 0.99
>=5 0.7 0.95 0.97 0.99

Table 3: Ratio of SDI* to SDI for the different diameter cutoff 
scenarios.

Ducey [12] demonstrated that the most extreme ratio of 
SDI* to SDI comes when trees are in two distinct diameter 
classes, such as those in a two-cohort stand like that of a 
shelterwood. These are stands where there are large numbers 
of small trees, yet, with majority of the basal area found in the 
large diameter classes. The most extreme ratios found in this 
analysis were between 0.55 and 0.60, with only 0.1% or 11 
records falling in this range. For example, the record with the 
lowest ratio of SDI* to SDI was a plot which contained 14 tree 
records with six large trees ranging from 30 to 56 inches and 
eight trees less than 2.5 inches, fitting with the criteria laid 
out by Ducey [12] and others describing a stand structure 
which would have an extreme ratio. In this example the QMD 
derived SDI was 175, and the summation derived SDI* was 
96. This same record, with the diameter cutoff of less than 
5 inches, SDI and SDI* are almost identical with each at 62. 
In this extreme example, both the method of calculating SDI 
and the diameter cutoff are important with regard to any 
interpretation of what these metrics represent or tell about 
this stand. Overall, with no diameter cutoff there is a greater 
amount of records tailing to the lower end whereas the 
larger diameter cutoff concentrates the distribution closer to 
1 (Figure 1).
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Figure 1: Histograms of SDI* to SDI ratio for each of the 
diameter cutoff scenarios.

DR calculated from Zeide’s [5] Taylor expansion 
(Equation [9]) should have the CV squared, proof being that 
when the b coefficient is 1 DR equals AMD and when b is 2 
DR equals the QMD (Figure 2). This proof is only true for 
QMD when the CV is squared. Although, an investigation 
into whether DR derived via this method is equal to the 
summation derived DR, has exposed some issues. First, the 
assertion and proof shown by Shaw [6], that the summation 
SDI* (Equation [6]) and the SDI calculated when utilizing the 
summation derived DR (Equation [8] used in Equation [4]) 
are equal, is correct. However, DR calculated via the Taylor 
expansion, as shown in the equations of Zeide [5] where CV 
is squared or for Weiskittel and Kuehne [7] where CV is not 
squared, is not exactly equivalent to the DR calculated by the 
summation method (Figure 3). In particular, as the coefficient 

of variation about arithmetic mean diameter increases, DR 
via Taylor expansion increases in proportion to DR calculated 
via the summation method. Perhaps, the early findings 
when utilizing DR were developed with stand data having 
low variability in diameter distribution, where these two 
calculations are indeed approximately equal. Zeide [5] made 
use of the stand table in Gingrich [13] (Table 5, p48), which 
had a coefficient of variation for the smallest and largest 
diameter classes of 45 and 29 respectively, to calculate DR 
via Taylor expansion (Equation [9]), which would show close 
agreement with the summation DR (Equation [8]).

Figure 2: DR via the Taylor expansion (Equation [9]) when 
b=2 should be equal to QMD. Coefficient of variation in this 
equation should be squared. CV on the x-axis is coefficient 
of variation. Dataset with no diameter cutoff shown.

Likewise, the SDI found with input of the Taylor 
expansion DR in place of QMD (Equation[9] using both 
CV and CV2, placed in Equation [4]) is not equivalent to 
the SDI* (Equation [6]) found via the summation method 
(Figure 4). Although, as the diameter cutoff increases there 
is greater agreement between the summation SDI* and the 
SDI calculated with DR via the Taylor expansion using CV2, 
in particular when the coefficient of variation is low. SDI 
calculated with CV not squared has already been shown to be 
incorrect, nonetheless it is interesting how the calculated SDI 
begins to fall in line with the summation SDI* at higher levels 
of variance. To avoid any confusion about what this diameter 
calculation is actually representing when calculating SDI*, DR 
calculated via Taylor expansion should not be utilized. It is 
recommended to either utilize QMD to calculate SDI, or if an 
area-based metric is desired, use the summation method to 
calculate SDI*.

https://medwinpublishers.com/JENR/
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Figure 3: Ratio of diameter calculations relative to QMD. CV on the x-axis is coefficient of variation.

Figure 4: Ratios of SDI calculated by summation DR (equivalent to SDI*), DR with CV2 and DR with CV relative to SDI calculated 
with QMD for each diameter cutoff scenario. There is no SDI calculation from AMD. CV on the x-axis is coefficient of variation.

Conclusion

The major conclusion of this analysis is that forest 
structure and any diameter cutoffs used during forest 
inventory sampling have a significant impact on SDI or 
SDI* calculation. Any application of either SDI or SDI* for 
density management should understand how diameter 
distributions and truncation could impact the interpretation 
of these indices, when dealing with irregularly structured 
forest types [14]. While the use of DR via Taylor expansion 
has interesting mathematical properties, the findings of this 
analysis do not support the use of this diameter calculation 
when applying to the stand density index. If a tree-by-tree, or 
area-based SDI* is desired, then the summation method, or 
calculating DR via the summation method, should be utilized. 
Which diameter calculation to utilize when exploring stand 
density can have major implications on the modeling process 
[15]. Ducey and Larson [9] ask whether sensitivity of SDI* to 

the shape of the diameter distribution enhances the meaning 
of the index or whether it is meaningless noise. The utility 
of any density index can only be set by the management 
objectives it will guide and the meaning it will have on any 
planned silvicultural activities. Moreover, the structure of the 
forest will ultimately dictate how the density index will be 
utilized and interpreted.
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