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Abstract

Changes in precipitation, temperature and water availability can significantly affect crop yields and hence food security at local 
and national scales. Despite the significant foreseen changes in hydroclimatology of croplands across the United States over 
the last decades, there are still lacking consistent information on how future hydroclimatic conditions of U.S. major croplands 
may change in response to climate change. This study investigates and quantifies shifts in hydroclimatology of five major crops 
including cotton, corn, soybean, sorghum, and wheat across the conterminous United States (CONUS). The results indicate 
that the direction and magnitude of hydroclimatic changes are highly variable across the climate projections. However, on 
average, hydroclimatic changes have a higher impact on sorghum and cotton, respectively. Understanding how croplands 
can be affected by climate change in the future can help decision-makers and water planners for the implementation and 
expansion of adaptive paths such as irrigation and conservation plans.       
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Introduction

Agriculture is by far one of the largest water use sectors 
in the United States that can be significantly influenced by 
future hydro climatic change [1-3]. Climate change already 
made a reduction in average yields of most major U.S crops 
[4]. An increase in temperature and changes in precipitation 
patterns during the growing season may lead to a decrease 
in crop productivity [5]. Enhanced understanding of shifts in 
the hydroclimatology of croplands has gained much attention 
as a key factor in investigating the climate-water-food nexus 
[6] which is not sufficiently and quantitatively reported in 
the previous studies [7].

The main goal of this study is thus to obtain a 
meaningful and quantitative understanding of how each 
US major cropping region can be affected in response to 
climate change. To this end, we evaluated shifts in regional 
hydroclimatic conditions of U.S. croplands by movements 
on the Budyko space from current (1986-2015) to future 
(2070-2099) conditions. The Budyko framework was 

applied as an effective way to evaluate the integrated effects 
of hydroclimatic variables [8,9]. We calculated shifts in the 
Budyko space for five major crops including cotton, corn, 
soybean, sorghum, and wheat within the United States.

The analysis is based on the projected Multivariate 
Adaptive Constructed Analogs (MACA) climate dataset [10] 
ranging from the driest to wettest projections at the 8-digit 
hydrologic unit code (HUC8) basin scale [11]. We considered 
three climate projections including wettest (WET), driest 
(DRY), and a model located near the middle of these ranges 
(MID) to account for uncertainties on the spatial pattern 
and magnitude of changes in precipitation and temperature 
[11,12]. We characterized which agricultural sectors are 
more vulnerable to hydroclimatic change.

Materials and Methods

We obtained the current climate variables from a 
combination of Daymet [13] and the Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) datasets 
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[14]. Future climate variables were also obtained from the 
downscaled Multivariate Adaptive Constructed Analogs 
(MACA) datasets [10].

The current and future climatic variables were 
then inputted to the Variable Infiltration Capacity (VIC) 
hydrological model to project changes in water availability 
of HUC8 river basins inside the US croplands. Readers are 
referred to Heidari [11] for the details about the VIC model 

calibration and evaluation.

Then, we determined changes in hydroclimatology of 
each cropland as a function of shifts in the Budyko space 
[8] (Figure 1). The Budyko space describes a relationship 
between evaporative and aridity indices [15]. The 
evaporative index is the ratio of actual evapotranspiration 
to precipitation [16] while the aridity index is the ratio of 
potential evapotranspiration to precipitation [17,18].

Figure 1: Characterization of magnitude and direction of movements in the Budyko space [11].

A river basin can move over time on the Budyko space 
due to a combination of shifts in aridity and evaporative 
indices. Change in the aridity index can represent climatic 
shifts while changes in the evaporative index can show shifts 
in water availability of river basins.

The combination of shifts in the Budyko space can be 
identified by the direction and magnitude of movements 
[16,19,20]. The direction of movement can be defined by

( ) yDirection D arctan
x

 ∆
=  ∆ 

                  (1)

where y∆ is change in the evaporative index and x∆ is 
change in the aridity index (Figure 1). Subsequently, the 
magnitude of change in the Budyko space can be obtained 
as follows:

( ) 2 2Magnitude M x y= +                   (2)

Overall, moving to the right means warmer and drier 
climatic conditions, and moving to the left means less arid 
conditions. Besides, moving to down indicates a higher rate 
of river discharge or wetter conditions while moving to up 
indicates less water yield or streamflow for a given HUC8 

river basin.

We quantified changes in hydroclimatic conditions 
of each cropland by average movements of river basins 
on the Budyko space. The direction represents regional 
differentiation and the magnitude of change identifies the 
most sensitive regions [21].

Results

The direction and magnitude of hydroclimatic changes 
are highly variable across the WET, MID, and DRY climate 
projections. Table 1 shows the average change in magnitude 
and direction of each U.S. croplands under the WET, MID, and 
DRY climate models. Additionally, the wind rose diagrams 
of changes in hydroclimatology of U.S. croplands are 
shown in Figure 2. Each wind rose visualizes the summary 
of movements in the Budyko space including direction, 
magnitude, and frequency for all HUC8 river basins inside 
of croplands. This type of diagram has been commonly 
applied in global hydroclimatic change assessments [22]. 
Under the WET and MID climate models, Soybean is likely to 
experience the wettest conditions among all five crops while 
wheat has the highest magnitude of change indicating that 
the hydroclimatology of wheat cropping land will be more 
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affected by climate change (Table 1).

Under the DRY climate model, all five crops move to the 
upper-right quadrant of the Budyko space indicating warmer 
and drier hydroclimatic conditions. Cotton has the worst 

direction and sorghum has the highest magnitude. Under all 
climate models, it can be concluded that the hydroclimatology 
of sorghum, cotton, and wheat is more likely to be affected 
under future climate change. 

Crop Average WET MID DRY Average
corn direction 189.2 213.0 59.4 153.9

magnitude 0.18 0.13 0.45 0.25
cotton direction 166.8 131.3 46.3 114.8

magnitude 0.18 0.25 0.97 0.46
sorghum direction 161.7 131.7 32.3 108.6

magnitude 0.19 0.27 1.41 0.62
soybean direction 191.3 223.7 58.5 157.8

magnitude 0.16 0.09 0.29 0.18
wheat direction 179.5 172.9 83.8 145.4

magnitude 0.31 0.28 0.77 0.45

Table 1: Average changes in magnitude and direction of U.S. croplands.

Corn

Cotton

Sorghum
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Soybean

Wheat

Figure 2: A wind rose diagram of changes in hydroclimatoloy of U.S. croplands (M represents the magnitude of changes).

Discussion 

Water availability is a vital need for a wide range of 
agricultural activities [23]. Long-term hydroclimatic changes 
may have significant impacts on regional water resources 
[24]. The findings of this study can help decision-makers to 
be prepared and react appropriately to changes in regional 
hydroclimatic conditions of croplands and their potential 
consequences on water and food resources, particularly 
under ongoing severe situations like the COVID pandemic 
[25], water shortages [24,26] and wildfires [27]. Long-term 
hydroclimatic changes may force farmers to change their 
crops based on the new regional hydroclimate conditions. 
Future projections of hydroclimatic changes in U.S. croplands 
can help managers, planners, and decision-makers to 
maximize crop production and prioritize water resources 
allocation by improving water resource management [7]. 
However, there are some important questions that should be 
addressed in this case as a prospect of this study.

The first question that can be raised here is how shifts in 
hydroclimatology of cropping regions may affect future crop 
productions. Although climate change may have positive 
impacts on agricultural productivity in some regions, it can 
reduce crop yields in regions that currently have optimal 
climate conditions [6,28,29]. For instance, Cho and McCarl 
[30] reported that cotton and sorghum are more appropriate 
under the warming temperature. Besides, sorghum, and 
spring wheat are more likely to be selected under drier 
conditions, while corn, cotton, and soybeans are better 
choices for wetter conditions [30]. Additionally, it is worth 

mentioning that while an increase in precipitation may be 
beneficial for most growing regions, it can have negative 
impacts on some cropping regions because of water-logging 
and pest disasters [6]. 

Another important question that should be addressed 
here is how much irrigation requirement would change in 
response to hydroclimatic change for maintaining current 
crop yields. Irrigation has been commonly used as an 
adaptation tool to increase crop yields and decrease the 
impacts of climate changes [31-33]. Considerable research 
has investigated the effects of climate variability on crop 
yield [34]. However, few studies have focused on the impacts 
of climate changes on irrigation water requirements [23]. 
Crop production can be stabilized by increasing irrigation 
[6,35-38]. An increase in irrigation helps crop production 
meets the current food demand, which may decrease in 
response to climate change [6]. While irrigation plays a key 
role in agricultural productivity, the impact of hydroclimatic 
changes on irrigation water use has not been well studied 
[31]. The impacts of climate change on irrigation water use 
have been rarely studied due to limited data availability [31].

Additionally, there is a few research on how irrigated and 
rainfed crop yields respond differently to climate change over 
five major US cropping regions [6]. Assessing the response of 
both rainfed and irrigated crop yields to climate change can 
lead to the improved understanding of the role of irrigation 
on agricultural productions [6]. Although precipitation plays 
an important role in dryland production systems, there is 
still a lack of studies evaluating the impacts of climate change 

https://medwinpublishers.com/JENR/


Journal of Ecology and Natural Resources
5

Heidari H. Shifts in Hydro Climatology of U.S. Croplands. J Ecol & Nat Resour 2022, 6(1): 000270. Copyright©  Heidari H.

on irrigated crops.

A national, spatially assessing the impacts of 
hydroclimatic shifts on U.S agricultural regions is needed to 
be done to provide insight into changes in crop productivity 
and dependence on irrigation [39].
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