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Abstract 

Different theories on how cells aged and many strategies to overcome this have been thought and retained much more 

attention in designing research in tissue regeneration and skin anti-aging. Mesenchymal stem cells (MSCs) have showed 

great interest since identified as residual stem cells in almost adult organs. These cells presented great ability in 

migration and were recruited rapidly into wounded sites where process of cell differentiation towards various skin cell 

components occurred. MSCs senescence may be involved in the loss of tissue homeostasis, which could lead to organs 

failure and development of age-related diseases. Several studies have demonstrated that intravenously injected MSCs can 

migrate specifically to the sites of tissue damage, such as those caused by ischemic conditions or inflammation. A 

continuous state of inflammation in the wound creates a cascade that perpetuates a nonhealing state. During the 

inflammatory phase, MSCs coordinate the effects of inflammatory cells and inhibit the deleterious effects of inflammatory 

cytokines. Different proteins are secreted by these cells such as vascular endothelial growth factor (VEGF), Transforming 

Growth Factor-β (TGF-β), and Growth Differentiation Factor 11 (GDF11) are the key tools for ensuring tissue 

regeneration. The mechanisms inducing tissue degeneration and cell aging remained multifactorial and still unclear. The 

skin undergoes constant changes, with a high capacity of repair and renovation. In wound healing, evidence established 

the involvement of MSCs and dermal fibroblasts (DF) through sirtuins and SMAD pathways. Moreover, the mainly and 

recently studied secretome of MSCs is the extracellular vesicles involved in migration and proliferation of DF and 

keratinocytes where GDF11 and TGF-β were expected to play the principal role. Theoretically identical MSCs populations 

from individuals may display different secretome properties, depending on factors including age and health status. 

Another source of adult stem cells, called adipose-derived stem cells (ADSCs), is relatively newer and less invasive with a 
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similar cell differentiation potential. Further in-depth studies are needed to clarify the relationships between these 

factors in promoting wound healing and antiaging process. These new approaches might be adapted for various cell types 

and the specific secretome promising for application in regenerative medicine. 
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Abbreviations: MSCs: Mesenchymal stem cells; TGF-β: 
Transforming Growth Factor-β; GDF11: Growth 
Differentiation Factor-11; ADSCs: Adipose Derived Stem 
Cells; DF: Dermal fibroblasts; ECM: Extracellular matrix.  
 

Introduction 

Rejuvenation is the undeniably the major concern of 
all peoples through time. Based on alchemy and 
mysticism, the attained unique objective was to identify 
the youth elixir. Nobody expected that this elixir really 
exists within our own cells.  

 
Different theories on how cells aged and many 

strategies to overcome this have been thought and 
retained much more attention in designing research in 
tissue regeneration and skin anti-aging. Even age-
dependent aging or photo-aging, these intrinsic and 
extrinsic factors were associated with wrinkles, elasticity 
loss, discoloration, irregular and dysfunction of 
pigmentation, hyperkeratosis and many other symptoms 
[1,2]. These manifestations rely on the impairment of a 
biological mechanism known as cell senescence, a 
multifactorial event leading to skin integrity loss.  

 
To promote skin regeneration and ensure 

rejuvenation, most of strategies were based on the 
promising ability of multipotent stem cells to enhance cell 
proliferation, extracellular matrix (ECM) production and 
growth factors secretion. In this case, mesenchymal stem 
cells (MSCs) have showed great interest since identified 
as residual stem cells in almost adult organs. MSCs remain 
a promising tool for regenerative medicine as the efficacy 
of MSC-based cell therapy has been demonstrated for a 
broad spectrum of indications. Resident MSCs in skin are 
indeed playing an important role in wound healing and 
rejuvenation processes [3]. These cells have been 
demonstrated to differentiate into fibroblasts inducing 
thus ECM production [4]. They are located at the base of 
the hair follicle (dermal papilla cells), in the dermal sheets 
(dermal sheet cells), in interfollicular dermis and could 
derived likely from the perivascular pericytes [5,6]. MSCs 

secrete a variety of autocrine/paracrine factors, called 
secretome, that support regenerative processes in the 
damaged tissue. MSCs display a rich secretory profile and 
express a variety of chemokines and cytokines that aid in 
repair of degraded tissue, restoration of normal tissue 
metabolism and counteracting inflammation. Recently, 
the secretome of MSCs have drew more attention as a 
mechanism governing skin repair and regeneration 
through stimulatory factors secretion [7,8]. Within this 
secretome, proteins such as Vascular Endothelial Growth 
Factor (VEGF), Transforming growth Factor-β (TGF-β), 
Growth Differentiation Factor 11 (GDF11), Stromal 
Derived Factor-1 (SDF-1) and basic-Fibroblast Growth 
Factor (b-FGF) have come to the light as key tools 
ensuring tissue regeneration and rejuvenation [6,9]. 

 
In wound healing, the mainly and recently studied 

secretome is the extracellular vesicles involved in 
migration and proliferation of dermal fibroblasts (DF) and 
keratinocytes including collagen and elastin deposition 
[10-15]. At the same way, authors reported similar 
positive effects of MSCs-conditioned media on skin aging 
manifestations [9,16-19]. All these secreted growth 
factors are able to act directly on skin cell properties and 
specifically on DF inducing thus angiogenesis and 
enhancing ECM production, thus allowing structural 
support and accelerating cell growth whereby antiaging 
process is attained. This interplay between MSCs 
secretion and the other epidermal progenitors seems to 
orchestrate the hierarchical process of regeneration and 
repair by an important MSCs-resident cells crosstalk in 
aging or after injury. Interestingly, wound healing was 
specifically associated to microRNA and protein transfer 
to skin cells through the TGF-β/SMAD2 pathway; TGF-β 
being identified as a “mediator” [14,20-22]. 

 
This SMAD pathway is also strongly involved in the 

aging process through the GDF-11 highlighted during cell 
rejuvenation and aging damage [9,23]. GDF11 is a 
member of the TGF-β superfamily playing a pivotal role in 
cell development and aging. Circulating GDF-11 level has 
been associated with aging in many human organs [9,24-
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28] as well as in animal models [29-31]. This factor is 
expressed in embryonic tissues while mRNA and protein 
levels were differently appreciated with higher protein 
levels in soft tissue, cerebral cortex, adrenal gland, testis 
and hippocampus [32,33]. MSCs derived from umbilical 
cord blood secreted significantly higher amounts of 
GDF11 compared to those from bone marrow and adipose 
tissue [9] and appeared highly concentrated in platelets 
[34]. In current research, this factor has raised many 
questions about its involvement in the inflammatory, 
proliferative and remodeling phases of wound healing. 
Adding to the fact that TGF-β was secreted by utmost 
epithelial cells and participated extensively to this 
cascade, the suggestion of an interaction of GDF11 and 
TGF-β for a sustainable skin biology and function have 
become more appropriate. In this review, we will try to 
reveal the potential of GDF11/TGF-β mechanisms in 
normal and wounded skin and to understand the 
paradigms which trigger during cell life a potential 
balance between cell regeneration and aging-associated 
mechanisms.  
 

GDF11/TGF- β Interferences in Skin Biology 

Aging is undeniably associated to a decline in most of 
organ’s functionality. The severity of this decline 
remained mainly dependent of health history, quality of 
life and genetic factors [35] (Rochette L et Mazini M 2019 
submitted). The mechanisms inducing tissue 
degeneration and cell aging remained multifactorial and 
still unclear. Impaired skin regeneration failed to ensure 
maintenance of the barrier and prevent its protection 
from pathological conditions. During normal development, 
skin regenerative capability is performed by the resident 
MSCs providing for cellular turn over during skin 
homeostasis and repair after injury [36]. Basal layer is the 
skin location where these active multipotent stem cells 
are responsible for recruiting and sending mature 
differentiated cells (keratinocytes) to the outer of 
epidermis. Through a hierarchic gradient, these stem cells 
induced epidermis layer regeneration by ensuring self-
renewal and a continuously production of transient 
amplifying cells [37]. Fibroblasts were also recognized to 
play a crucial role in skin regeneration through GDF11 
secretion in both neonatal and adult cells [38]. Kim Y, et al. 
have demonstrated that GDF11 activated fibroblasts to 
increase ECM proteins production and especially collagen 
1 and 3 and fibronectin [9].  
 

Wound Healing 

MSCs presented great ability in migration and were 
recruited rapidly into wounded sites where process of cell 

differentiation towards various skin cell components 
occurred [39]. ADSC identified within the basal layer 
might influence the physiological characteristics of the 
injured skin. During the proliferation phase, cytokines 
and chemokines secreted by these cells were involved in 
several fibroblasts’ characteristics such as cell 
proliferation, migration and specifically collagen 
synthesis and other ECM proteins connected with tissue 
repair and regeneration [40-42]. Indeed, conditioned 
media from ADSCs, umbilical cord- and amniotic fluid-
MSCs significantly enhanced proliferation of DF [43]. 
Involvement of MSCs and DF are essential for the cascade 
of the factors related to skin regeneration and reflected 
the importance of endogenous compounds such as 
sirtuins and SMAD pathways [44,45]. The sirtuins are a 
family of proteins that comprise class III of the histone 
deacetylases. These NAD+-dependent proteins have been 
found to be intricately involved in a variety of important 
and skin-relevant cellular functions and processes, 
including aging, UV damage response, and wound repair. 
Various endogenous factors have proven evidence of their 
crucial role in angiogenesis especially the VEGF. These 
ADSCs were reported to secrete ECM supporting thus the 
skin structure under normal and healing conditions 
[46,47]. The proteins of this ECM were reported to 
modulate the activity of keratinocytes and DF through 
mediating growth factors secretion such as TGF-β to 
activate healing process [48,49]. Recently, the collagen 
triple helix repeat containing 1 protein contributed to 
healing process via increasing M2 macrophages 
recruitment and TGF-β expression level [50]. On behalf 
the secreted proteins involved in this wound healing, the 
TGF-β/SMAD 2 pathways were increased and DF induced. 
TGF-β receptor has been identified in MSCs [40] and its 
activation resulted in enhancing MSCs homing ability CXC 
chemokine receptor 4 (CXCR4) dependent. CXCR4 
regulates the retention of stem/progenitor cells in the 
bone marrow and other tissues [51,52].  

 
At the other side, GDF11 has been recently associated 

to skin aging. However, there are discrepancies between 
its serum levels reported and first studies did not relate 
on the decrease of its circulating level during aging [24]. 
Improving GDF11-antigen specificity versus myostatin, 
the other TGF-β family sharing with it more than 90% of 
its amino acid sequences, has demonstrated this decrease 
in animal models [53] and in human [26,54]. 

 
Many reports have demonstrated that GDF11 levels 

were related to disturbance in sustainable biological 
process in many organs as in cardiovascular diseases 
[28,55], in skin wounds [56] and in neurologic deficits 
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[57]. Nevertheless, when activation of SMAD2/3 
pathways through GDF11 and its specific receptor 
membrane Activin type IIB (ActIIBR) occurred on MSCs, 
similar mechanism might be achieved by TGF-β, 
suggesting that interference with TGF-β and GDF11 
mechanisms might be the key regulator of healing and 
aging. If there is a relationship between both factors 
acting on the same cell, one might be able to speculate 
that healing process could be modulated by balancing the 
TGF-β pathway.  
 

Skin Pigmentation 

During a single day in the sun, each exposed 
keratinocyte receives up to 105 ultraviolet (UV) 
photoproducts in its DNA. Therefore, an elaborate system 
is needed to repair UV-induced damage. Skin 
pigmentation can be altered owing to the direct and 
indirect effects of solar radiation on melanocytes. Indeed, 
solar radiation directly affects melanocyte homeostasis 
through the induction of well- defined structural 
alterations in DNA. Skin pigmentation can also be 
activated as a photo protective and adaptive mechanism 
against the effects of UV radiation on skin. In this context, 
the crosstalk between keratinocytes, fibroblasts, immune 
cells, and melanocytes is mediated by paracrine signaling 
cascade. Among the endogenous protective factors, the 
central process is the endogenous MSCs which coordinate 
the repair response by recruiting other host cells and 
secreting growth factors and matrix proteins. 

 
Evidences of implications of MSCs in dermal and 

epidermal proliferation have suggested that these cells 
might impact melanocyte functions in physiologic and 
wounded tissues. Derived from human adipose, MSCs 
increased their TGF-β secretion inducing melanocytes to 
down-regulate the expression of melanogenic enzymes 
and prevent site-specific pigmentation in reconstructs 
skin grafting. These interactions might be of interest in 
clinical application by modulating melanin synthesis [58]. 
These cells increased TGF-β secretion maintaining thus 
melanocytes in an immature state. Dermal fibroblasts also 
acted on melanocytes by secreting cytokines and growth 
factors as TGB-β modulating melanin-producing enzymes 
and thus skin pigmentation [59], suggesting that dermal 
composition in cells might determine the production of 
mature melanocytes and hence melanin transfer to 
keratinocytes. Klar et al have demonstrated the crucial 
role of TGF-β in the whitening of skin [58]. However, a 
recent study has shown that recombinant GDF11 (rGDF11) 
significantly reduced melanin production in melanocytes 
and 3D skin equivalents [60]. Moreover, by increasing 

collagenase Matrix metalloproteinase-9 (MMP-9) 
secretion, rGDF11 participated in matrix remodeling 
maybe through interaction of MMP-9 with TGF-β1 to 
facilitate skin wound closure [61,62].  

 

Skin Aging 

Skin aging is an apparent process associating 
morphologic disgraces and structural deficits. ECM mainly 
secreted by DF are composed of glycosaminoglycans, 
collagen type I and III and elastin and is continuously 
modified by physiological and extrinsic factors. UV- 
induced oxidative stress and energy metabolism 
alterations could also be a possible skin aging process and 
are responsible for the degradation of this ECM leading to 
an increase in enzymatic activity associated with collagen 
degeneration and loss of mechanical functions such as 
elasticity [63].  

 
Other intrinsic factors are actually known to impair 

physiological functions of the skin and associated to cell 
senescence including DNA damage [64,65], telomeres 
shortening [66] and reactive oxygen species (ROS) 
production [67]. All these processes show major roles in 
inducing tissue-aging and carcinogenesis [68,69]. 
However, recent studies have demonstrated that this 
senescence can be induced by TGF-β /SMAD as a normal 
developmental process. Otherwise, an interesting concept 
of paracrine senescent cells have been proposed by 
Lunyak, et al. [70] where resident senescent MSCs can 
trigger and reinforce senescence within their 
microenvironment. This paracrine effect can be 
transmitted by ligands of TGF-β by mediating changes in 
the transcriptional program through SMAD family 
members [71].  

 
Nevertheless, ADSC and DF appeared more attractive 

in term of protein secretion [72]. ADSC-conditioned 
media were anti-apoptotic and ensure skin tissue 
regeneration [19,73,74] and protected DF by increasing 
their superoxide dismutase and glutathione peroxidase 
activities [63]. This MSCs-conditioned medium has been 
reported to stimulate and enhance DF proliferation and 
ECM production. An anti-wrinkle effect and dermal 
density increase were shown after in vivo treatment [9]. 
Moreover, the young cells supported higher proliferation 
rate of keratinocyte stem cells than those from aged 
donors [75]. Interestingly, GDF11 expression and activity 
were reduced in adult DF compared to the neonatal ones 
[38] as its expected for MSCs [76].  
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ADSC were present within hypodermis cellular 
components suggesting their benefit in preventing skin 
aging induced by ROS production. In addition, these cells 
have been largely reported to induce re-epithelialization 
of injured skin and are used as promising therapy for 
remodeling and cosmetic surgery [16,77]. Indeed, ADSC 
have proven their superiority in improving and increasing 
dermal thickness and reducing wrinkles more likely by 
inducing paracrine dermal fibroblasts and angiogenesis 
[77-79]. Administrated intradermally to an aged skin, skin 
texture and wrinkles as well as dermal thickness were 
found improved 8 weeks after treatment [80].  
 

Discussion 

Finally, MSCs senescence may be involved in the loss 
of tissue homeostasis, which could lead to organs failure 
and development of age-related diseases. Several studies 
have demonstrated that intravenously injected MSCs can 
migrate specifically to the sites of tissue damage, such as 
those caused by ischemic conditions or inflammation. In 
this context, MSCs display a rich secretory profile and 
express a variety of chemokines and cytokines that aid in 
repair of degraded tissue, restoration of normal tissue 
metabolism. MSCs are considered as the best candidate in 
tissue repair and regenerative medicine. They seemed 
likely to act through a secretome release pathway rather 
than cell replacement [32,81]. Another surprising 
capacity of these cells is that MSCs from a young donor 
are more proliferative than cells of an elderly individual 
[77]; this process is a new way of cell therapy without 
cells [72,82], via the potential directed secretome of these 
cells towards a tissue regeneration or rejuvenation. 
GDF11 and TGF-β present within this secretome are 
involved in many biological mechanisms including cell 
proliferation, tissue repair and rejuvenation. These both 
signaling have been reported to promote cancer 
metastasis [83,84]. In skin biology, GDF11 significantly 
increased genes expression related to ECM production, to 
maintenance of skin barrier function, to skin cell 
proliferation and to epidermal turnover and 
differentiation [60] by triggering SMAD signaling in a 
TGF-β like fashion, suggesting that intracellular 
messengers related to TFG-β regulated the changes in 
GDF11 secretion and impact on skin architecture and 
function.  

 
We cannot exclude that MSCs secreted other cytokines 

than GDF11 and TGF-β, such as Platelets Derived Growth 
Factor, Interleukin-1, Bone Morphogenic Protein (BMP)6, 
BMP9, might exert an autocrine and paracrine effects on 
DF and keratinocytes promoting cell differentiation, 

proliferation and migration. Nevertheless, the antiaging 
paracrine effect seemed to be induced, perhaps not 
exclusively but at least to a significant degree, by a 
combinatorial effect of both GDF11 and TGF-β. It’s 
probably that both signals vary with age and that the 
strength of each of them is reciprocal to the sites of 
secreted signals and to the length of the exposure to the 
signal. Based on these considerations, further 
investigations on TGF-β and GDF11 molecular 
mechanisms implication on skin rejuvenation are needed 
to increase the knowledge and draw conclusions on the 
regulation of aging process. 
 

Conclusion 

Due to complex composition of MSCs secretomes and 
its relationships between the other skin cell components, 
it was necessary to focus on the specific promising growth 
factors that would reflect the regenerative potency in the 
process of skin aging. These new approaches might be 
adapted for various cell types and their specific 
secretomes promising for application in regenerative 
medicine. The ability of MSCs to promote the transition 
from the inflammatory to the proliferative phase is 
particularly critical for treating chronic wounds. Many 
efforts are under way to develop novel bioengineered 
wound-healing products and considering the role of MSCs 
in the wound-healing process. 
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