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Abstract

Eukaryotic gene expression can be exquisite tuned at various levels, especially at the mRNA level. There are over 100 kinds 
of chemical modifications identified on mRNA. Poly(A) tail are high conserved and ubiquitous modifications, which regulated 
by poly(A) polymerases and deadenylases. Poly(A) tail affect the mRNA stability, translation efficacy, and abundance. As an 
essential stage of life – embryogenesis, poly(A) tail exerts a vast influence with dynamic length. In this review, we summarize 
the effect of poly(A) tail on early embryogenesis and provide the potential mechanism. 
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Introduction

Eukaryotic gene expression can be regulated at many 
levels, poly(A) tail modification on mRNA are consistent 
and ubiquitous in eukaryotes [1]. Early embryogenesis is a 
unique and fine-tune stage. Emerging evidence suggest that 
poly(A) tail play a vital role in this stage. In this review, we 
post a potential link between poly(A) tail and embryogenesis 
and summarize the underlying mechanism.
 

Effects of Poly(A) Tail on Early Embryogenesis 
and the Potential Mechanisms

Eukaryotic gene expression can be regulated at many 
levels, among which the regulation at the mRNA level is the 
most convenient way to adjust the efficiency of translation. In 
the mRNA level, it has been characterized by multi-level and 
diversified regulation. It includes transcription, translation, 
processing, transport out of the nucleus, cell location, storage, 
and degradation [2-4], among which post-transcription 
modifications is one of the key means of regulation of protein 
synthesis [5]. Over 100 types of chemical modifications have 
been identified in cellular RNAs, among which the 5′ cap 
modification and the poly(A) tail have been identified and 
characterized earlier [6].
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Poly(A) tail are high conserved and ubiquitous in 
eukaryotes, ~ 250 nucleotides homopolymer adenosines at 
the 3′ end of RNA in mammalian cells added by polymerases, 
non-templated of RNA [7]. Poly(A) tail length correlates 
with mRNA stability and half-life, which balanced by 
polyadenylation (poly(A) polymerases) and deadenylation 
(deadenylases) [8]. The poly(A) tail at the 3′ end reflect their 
regulatory status and play important roles in the control 
of the fates of RNAs, such as nuclear export, translation 
efficiency, and recycling and promotes mRNA stability. There 
are various protein factors binding with poly(A) tail, such 
as cytoplasmic poly(A) binding protein (PABPC), nuclear 
poly(A) binding protein (PABPN), which contains potentially 
coordinated regulation [9,10]. As mounting evidence allude 
to, poly(A) tail plays a key role in mRNA decay. mRNA 
degradation is widely involved in pivotal biological processes, 
whose imbalance dynamic could induce the development of 
many major diseases, such as cancer, viral infections and 
neurodegeneration etc. [11,12]. Recent research by novel 
sequencing-based methods for checking the poly(A) tails 
length has revealed the dynamic nature of poly(A) tails in 
development. 

In tradition view, a long poly(A) tail would protect 
the mRNA from decay and degradation. However, with the 
novel sequencing technology (TAIL-seq or Nanopore), it 
was a nuance that longer poly(A) tails hinted transcripts 
of lower abundance and poor translation [13-15]. And 
inadequate cleavage and polyadenylation may lead to human 
diseases, including cancer, Chronic lymphocytic leukaemia 
and neurological diseases [16]. However, limited on the 
sequencing technology, the mechanism would be difficult 
to elucidate. Recent researches focus on a specific cell 
context- the early embryogenesis. In this review, focusing on 
mRNA degradation, we discuss the role of poly(A) tails on 
embryogenesis.

During early embryogenesis in animals, after 
fertilization, the transcription is withdrawn for some 
time, and the deposited composition and utilization of the 
cellular transcriptome must be responsive to temporal cues, 
especially, a set of maternal mRNAs and proteins deposited in 
the egg [17]. Subsequently, at the key time point of maternal-
to-zygotic transition (MZT), the significant events happen, 
including the occurrence of zygotic genome activation, the 
mass degradation of maternal mRNAs and major epigenetic 
reprogramming [9,18]. Cytoplasmic polyadenylation (CPA) is 
crucial for the translational regulation of maternal mRNAs, 
which exerts a vast influence on timely activation of maternal 
mRNAs at the period of both oocyte maturation and the early 
embryonic development. During the embryogenesis, the 
poly(A) tails of maternal RNAs remain short and gradually 
elongate in later stages, well-controlled by cytoplasmic 
polyadenylation (CPA). In these early embryonic stages, a 

twofold increase in the length of poly(A) tail corresponded to 
a large increase in translational efficiency [15]. Specifically, 
for GV-stage-arrested oocytes, a large number of maternal 
mRNAs contain with a short poly(A) tail (20 ~ 40 nt); upon 
meiotic maturation, maternal mRNAs contain with a long 
poly(A) tail (80 ~ 250 nt) [7]. Cytoplasmic polyadenylation 
may regulate the mid-blastula transition in at least two 
possible ways. First, it facilitates zygotic genome activation. 
Second, it is required for the clearance of maternal mRNAs 
[9]. Beyond polyadenylation, many factors involved in 
regulating mRNA decay, such as the MAPK cascade, CNOT6L, 
and BTG4 [19]. The relationship between the interaction 
factors regulated the mRNA tail remains unclear.

Conclusion

In summary, in mRNA level, poly(A) tail modification 
can affect protein production during early embryogenesis 
through various mechanisms. Nonetheless, future studies 
into the mechanisms below the poly(A) in the embryogenesis 
will not only provide the answer to a specific cellular context 
but extend our understanding about fine-tuned gene 
regulation in mRNA level.
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