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Abstract

Artificial intelligence (AI) has rapidly emerged as a powerful tool in the global effort to prevent and control infectious diseases. 
With the growing burden of pandemics, antimicrobial resistance (AMR), and travel-related outbreaks, traditional public health 
responses face significant challenges in speed, scale, and coordination. AI technologies—ranging from machine learning (ML) 
and natural language processing (NLP) to deep learning and generative models—offer new capabilities across surveillance, 
early outbreak detection, diagnostics, modeling, vaccine development, public communication, and resource allocation. 
This review synthesizes the expanding applications of AI in infectious disease prevention and control and highlights its 
transformative potential in improving preparedness and response. AI enables real-time integration of heterogeneous data 
sources, supports precision diagnostics in low-resource settings, accelerates vaccine target identification, and enhances public 
health communication during crises. However, its implementation is not without challenges. These include data quality and 
bias, privacy and security, technical limitations, transparency and trust, ethical concerns, misinformation, regulatory gaps, 
cost and infrastructure constraints, and system fragmentation. To maximize AI’s benefits, policy frameworks should promote 
equitable data access, interdisciplinary collaboration, and inclusive governance mechanisms. Technical development should 
also prioritize transparency, adaptability, and contextual relevance. AI has the potential to reshape global infectious disease 
prevention and control, but realizing its promise requires deliberate, coordinated efforts to overcome structural, ethical, and 
technical barriers.
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Abbreviations

AI: Artificial Intelligence; AMR: Antimicrobial Resistance; ML: 
Machine Learning; NPL: Natural Language Processing; IDVI: 
Infectious Disease Vulnerability Index; VAEs: Variational 
Autoencoders; MPL: Multi-layered perceptron; GNNs: Graph 
Neutral Networks; GANs: Generative Adversarial Networks; 

CNNs: Convolutional Neural Networks

Introduction

Artificial intelligence (AI), broadly defined as the 
performance of tasks by computer programs that typically 
require human intelligence, is increasingly recognized as 
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a transformative force in global health [1]. Its applications 
span disease surveillance, behavioural risk analysis, resource 
optimization, tailored health communication, and combating 
misinformation [2].

These capacities are urgently needed, as infectious 
diseases remain a major global health threat. Diseases 
such as HIV/AIDS, tuberculosis, and malaria, along with 
pandemics like COVID-19, continue to cause widespread 
mortality and socioeconomic disruption [3]. In addition, 
the rise of antimicrobial resistance (AMR) represents a 
silent yet escalating global crisis, [4] while international 
travel accelerates the spread of emerging pathogens [5]. 
These challenges highlight the need for faster, smarter, and 
more coordinated public health responses. AI is uniquely 
positioned to address these gaps by identifying high-risk 
patients, predicting outbreak dynamics, and informing 
tailored prevention and control strategies [6]. However, 
there are still a series of urgent problems and challenges 
to be solved in order to better apply AI to the prevention 
and control of infectious diseases, including data quality 
and bias issues, technical limitations, ethical dilemmas, 
regulatory gaps, and systemic barriers such as inadequate 
infrastructure, high costs, and workforce shortages. This 
review examines the expanding role of AI in infectious 
disease prevention and control, focusing on its opportunities 
and transformative potential, implementation challenges, 
and policy implications.

Opportunities and Transformative Potential

AI holds significant potential across multiple domains 
of infectious disease prevention and control, including 
enhancing surveillance and early outbreak detection, 
advancing epidemiological modeling and forecasting, 
supporting diagnostics and decision-making systems, 
accelerating vaccine development and distribution, 
optimizing response strategies and resource allocation, and 
strengthening public health communication.

Surveillance and Early Outbreak Detection

AI has revolutionized real-time infectious disease 
surveillance by enabling the timely detection of outbreak 
signals from complex and heterogeneous data sources. 
Traditional surveillance systems are often limited by 
reporting delays and fragmented data streams, while AI 
algorithms—particularly those using natural language 
processing (NLP) and machine learning (ML)—can rapidly 
identify abnormal patterns across digital platforms, news 
sources, and social media [7].

AI-powered platforms such as HealthMap and BlueDot 
exemplify the capabilities of NLP-based surveillance systems. 

HealthMap processes large volumes of global web-based 
data to identify early signs of outbreaks, successfully flagging 
events like H1N1 and COVID-19 ahead of conventional 
systems [7]. BlueDot integrates global air travel patterns, 
climate change indicators, and zoonotic spillover data using 
ML and NLP to track more than 100 diseases [8] It was among 
the first platforms to identify the emergence of SARS-CoV-2 
in December 2019 [6].

AI also facilitates the real-time monitoring of syndromic 
and behavioural data. Wearables and biosensors—such 
as smartwatches and microphones—can detect early 
physiological changes, including elevated resting heart rates 
or unusual coughing patterns, that serve as proxies for illness 
before clinical diagnosis [9]. The population aggregate of 
this signal can warn public health officials of an impending 
outbreak [7]. Similarly, public health researchers have used 
AI to analyse data from social media and search engine 
queries to monitor symptom surges and community-level 
concern [10].

Integrated modeling approaches further enhance 
anticipatory surveillance. AI-based systems can combine 
travel data, phone-based tracking, and epidemiological 
signals to detect and characterize outbreak risks at both local 
and global scales [3] One example is the Infectious Disease 
Vulnerability Index (IDVI), which synthesizes national data 
on governance, healthcare capacity, and demographics to 
estimate country-level preparedness, with higher scores 
reflecting a better ability to respond to a disease outbreak 
[11,12] In parallel, mobile phone–based cyber surveys have 
been used to identify people with mild symptoms and track 
disease spread in real time [13].

AI has also advanced digital surveillance and early 
outbreak detection through mobile sensor-based systems 
and contact tracing technologies. ML-driven platforms such 
as the Epidemic Watch System (EWS) utilize smartphone 
sensor data and algorithms to monitor contacts and classify 
infection risks in real time [14]. These systems enhance early 
detection capabilities and support public health decision-
making. To improve accuracy, researchers developed multi-
sensor fusion models that reduce false positives by 95% 
and increase detection accuracy by 62% [15]. Furthermore, 
privacy-preserving ML frameworks have been proposed to 
enable scalable and ethical digital surveillance during future 
outbreaks [16].

Epidemiological Modeling and Forecasting

Beyond real-time surveillance, AI also plays a vital role in 
the modeling and forecasting of infectious disease outbreaks, 
supporting forward-looking public health strategies. 
Traditional models such as SIR and agent-based simulations 
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have been foundational in infectious disease epidemiology 
but often struggle with computational burden, data sparsity, 
and parameter estimation [17] AI techniques—including 
ML, deep generative models, and Bayesian inference 
techniques—have been increasingly adopted to address 
these limitations [18,19].

AI models enhance the estimation of key epidemiological 
parameters such as transmissibility, infection fatality 
ratios, and generation intervals, even when input data 
are incomplete or noisy [20] This improvement is made 
possible by leveraging a range of advanced analytical 
methodologies.

One foundational statistical framework, increasingly 
intertwined with AI-driven epidemiological analysis, is 
Bayesian modeling. While rooted in classical statistics, 
Bayesian approaches offer a powerful lens for understanding 
disease dynamics by systematically integrating prior 
knowledge with observed data, handling uncertainty 
explicitly, and modeling complex spatial and temporal 
dependencies. This methodology considers unknown 
parameters as random variables characterized by probability 
distributions, incorporating prior information with current 
data to derive a posterior distribution [21]. Bayesian 
principles are increasingly integrated directly into AI models, 
such as generative models [22] and neural networks, [23] 
to enhance interpretability and provide robust uncertainty 
quantification for predictions. This approach is instrumental 
in addressing common challenges in spatial epidemiology, 
including non-normality, limited sample sizes, missing data, 
and clustered data structures. In epidemiological modeling 
and forecasting, these models are applied for tasks such 
as estimating disease transmission risk, identifying high-
incidence areas, assessing influencing factors, enabling real-
time disease surveillance, and forecasting outbreaks to guide 
public health planning and resource allocation [21].

Beyond these established statistical frameworks, 
specialized deep learning architectures offer new paradigms 
for understanding disease dynamics. Graph Neural Networks 
(GNNs), for example, are specifically designed to process 
and learn from graph-structured data, capturing complex 
relational information crucial for epidemiological insights. 
The methodology of GNNs in epidemic modeling involves 
representing complex relationships and interactions 
within epidemiological data as graphs, where nodes might 
represent individuals, locations, or demographic groups, 
and edges signify connections or interactions relevant 
to disease spread. GNNs are designed to learn from the 
structure of these graphs, aggregating information from 
neighbouring nodes to update the representation of each 
node, thereby capturing both local and global dependencies 
within the network. These models can be purely data-driven 

(Neural Models) or integrate mechanistic epidemiological 
models (Hybrid Models). In epidemiological modeling and 
forecasting, GNNs are applied to overcome limitations of 
traditional models by effectively incorporating relational 
data, such as human mobility and contact networks. Their 
applications include disease forecasting, outbreak detection, 
understanding transmission pathways, and public health 
surveillance, facilitating the modeling of complex spatio-
temporal dependencies that are often challenging for 
conventional approaches [24].

Complementing models that analyse existing data 
structures, another class of AI, generative models, offers 
powerful techniques for creating synthetic data and 
simulating complex systems, thereby addressing critical gaps 
in epidemiological modeling and forecasting. Generative 
models learn the underlying patterns and distributions 
of input data to produce new, realistic samples that share 
characteristics with the original data. Key methodologies 
include Generative Adversarial Networks (GANs), which 
use a competitive generator-discriminator framework, and 
Variational Autoencoders (VAEs), which learn probabilistic 
data representations for decoding new samples. The 
methodology involves meticulous data collection, model 
development and training, and critically, integration with 
classical epidemiological models like SIR and SEIR for 
a novel, synergistic framework. Rigorous validation is 
essential to ensure accuracy. In epidemiological modeling 
and forecasting, generative models revolutionize the field by 
generating synthetic epidemiological data, addressing issues 
of data scarcity and privacy. This synthetic data enhances the 
accuracy and efficiency of predicting disease outbreaks and 
understanding their complex dynamics, ultimately improving 
the predictive capabilities of existing epidemiological models 
and providing more nuanced insights for public health 
decision-making [25].

Practical applications of AI-based modeling are extensive. 
BlueDot not only detects outbreaks but also forecasts 
potential spread by incorporating global travel, weather 
patterns, and zoonotic spillover data [8]. Similarly, novel 
algorithms such as Extremal Optimization–tuned Neural 
Networks (EO-NN), combined with GPS tracking, have been 
used to identify disease hotspots for Kyasanur Forest Disease 
(KFD) [3]. AI-based Random Forest models proved effective 
in forecasting H5N1 outbreaks in Egypt, [26] while SARIMA 
and SARIMANNAR models have been developed to predict 
seasonal TB outbreaks and assess TB seasonality in South 
Africa [27]. Others have predicted novel fungal infection risk 
factors through ML-based classification [28].

AI’s predictive capabilities extend to scenario modeling 
and resource planning. Multi-layered perceptron (MLP) and 
adaptive network–based fuzzy inference systems (ANFIS) 
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have demonstrated promising results in forecasting infection 
trends and mortality [29]. These models support healthcare 
system preparedness by simulating disease burden 
under varying intervention strategies. In one study, deep 
reinforcement learning (DRL) was used in Hong Kong to 
dynamically adjust non-pharmaceutical interventions (NPIs) 
based on travel, climate, and behavioural data. The system-
controlled outbreaks while minimizing health system strain 
and accelerating herd immunity [30].

As more diverse data streams—including climate, 
genomic, and behavioural indicators—are integrated, AI has 
the potential to further improve forecasting accuracy and 
policy responsiveness.

Diagnostics and Decision Support Systems

AI has revolutionized diagnostics and clinical decision-
making in infectious diseases, particularly in resource-
limited settings where skilled personnel and laboratory 
infrastructure are scarce. By integrating medical imaging, 
electronic health records (EHRs), and clinical data, AI tools 
improve diagnostic accuracy, reduce diagnostic delays, and 
enhance infection control at both individual and population 
levels [3,31,32].

Diagnostics and decision support systems significantly 
leverage AI models that excel at pattern recognition, 
classification, and multimodal data processing for infectious 
disease prevention and control.

Among these foundational AI approaches, ML provides 
a robust, data-driven toolkit to enhance diagnostics and 
decision support in infectious disease control. These 
methodologies identify complex patterns from diverse 
patient data, including symptoms, medical history, imaging 
results, and demographic information, to improve diagnostic 
speed, accuracy, and reliability. A variety of ML algorithms 
are employed, such as Logistic Regression, Support Vector 
Machines, Naive Bayes, Decision Tree, K-Nearest Neighbour, 
various forms of Artificial Neural Networks, and powerful 
ensemble techniques that combine multiple models. These 
approaches have proven effective in diagnosing infectious 
conditions, as well as in patient risk assessment and overall 
health management planning [33].

Within the broader spectrum of ML techniques, 
Convolutional Neural Networks (CNNs) have demonstrated 
a transformative impact, particularly within medical image 
analysis for infectious disease diagnosis. CNNs represent 
a powerful deep learning methodology adept at image 
classification by automatically extracting and selecting 
features, providing an end-to-end solution where features 
are learned directly from the data through their inherent 

architecture. This capability makes CNNs highly valuable 
for medical image classification for disease diagnosis, 
where their application can accelerate diagnosis and patient 
referral, leading to earlier treatment and increased cure 
rates. This robust approach supports clinical decision-
making by providing timely and accurate diagnostic insights 
from medical imaging, thereby contributing to infectious 
disease prevention and control efforts [34,35].

For processing textual information, NLP and Large 
Language Models (LLMs) represent a crucial and evolving 
subset of AI methodologies designed to understand, 
interpret, and generate human language text, which is 
particularly valuable for analysing intricate clinical data. The 
core methodology involves training models for contextual 
understanding and human-like text generation, enabling 
machines to process unstructured textual information. 
This capability is applied in infectious disease diagnosis 
and decision support by extracting vital information from 
diverse textual sources such as medical reports and clinical 
notes. Applications include enhancing diagnostic accuracy by 
identifying disease-related patterns from free-text reports, 
improving public health surveillance through the analysis of 
large volumes of textual data for early outbreak detection, 
and supporting risk assessment by extracting crucial 
clinical data for predictive analytics [36-38]. These models 
offer significant potential for streamlining medical tasks 
and augmenting human expertise in managing infectious 
diseases.

Complementing these diagnostic models, Federated 
learning is a decentralized ML methodology that enables 
the training of algorithms across multiple local data samples 
without the need for exchanging raw data between servers 
or edge devices. Unlike conventional centralized methods 
where all local datasets are transferred to a single server, 
federated learning allows models to be trained locally using 
data samples collected at each node. These locally trained 
models are then synchronized with a master model, often 
an Artificial Neural Network (ANN), which further globally 
trains the peer nodes, allowing for continuous refinement of 
a shared linear model. This approach effectively addresses 
critical challenges such as data access rights, data privacy, 
heterogeneous data access, and security, making it 
particularly beneficial in sensitive domains like healthcare. 
In the context of infectious disease diagnosis and decision 
support, federated learning is applied to develop more 
accurate and reliable distributed ML models for disease 
detection systems. Training algorithms on diverse, localized 
datasets without compromising privacy can improve the 
quality and reliability of disease detection technology, 
thereby safeguarding human health through more precise 
and timely predictions derived from improved medical 
records [39].
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Building on these capabilities, AI-powered diagnostics 
stand out as a prominent application area, spanning medical 
imaging interpretation, microbial analysis, portable testing, 
and drug resistance detection—ultimately enhancing 
timely diagnosis and infection control. One of the most 
widely applied use cases is AI-powered medical imaging. 
Deep learning algorithms have been used to interpret chest 
radiographs for tuberculosis (TB), particularly in regions 
lacking access to radiologists. These models can triage normal 
cases efficiently, allowing clinicians to focus on ambiguous 
or critical findings. Similarly, AI-enhanced microscopy, such 
as CNNs for Gram stain interpretation, offers high diagnostic 
precision for bacterial infections and antimicrobial-resistant 
pathogens [6]. In malaria diagnosis, AI systems analyse blood 
samples to identify red blood cells infected with Plasmodium 
species, providing faster and more cost-effective diagnosis 
in high-burden areas [40]. During the early stages of the 
COVID-19 pandemic, neural networks were used to analyse 
chest X-rays, achieving high diagnostic accuracy [41].

In microbiology, population genomics combined with 
ML models enables the identification of high-risk genotypes, 
improving the targeting of prevention programs [6]. Tools 
have also been used to differentiate between bacterial and 
viral causes of meningitis with high precision [42].

Portable diagnostic tools powered by AI are expanding 
access to rapid, decentralized testing [43]. Mobile apps 
and handheld devices can interpret images, symptoms, and 
even cough audio to diagnose conditions like TB, malaria, or 
respiratory infections in remote settings [44] These advances 
reduce dependency on centralized labs and allow for faster 
case isolation and treatment initiation.

AI has also accelerated drug susceptibility testing 
and the detection of AMR. Algorithms trained on genomic 
and phenotypic data can predict resistance patterns and 
recommend effective therapies, contributing to efforts to 
combat the global rise of AMR [43]. Integration of these 
tools into surveillance and hospital systems enhances both 
individual care and broader infection prevention strategies.

Overall, AI-based diagnostics and decision-support tools 
contribute to timely disease detection, efficient resource 
use, and improved infection control, especially in under-
resourced settings where traditional diagnostic methods are 
not always feasible.

Vaccine Development and Delivery

The COVID-19 pandemic underscored the need for rapid 
vaccine development and global delivery infrastructure. AI 
has contributed significantly to this effort by accelerating 
vaccine design, optimizing immunogenic target selection, 

and improving public health implementation strategies [45]. 
Using AI, researchers have been able to identify candidate 
antigens and predict immune responses with greater speed 
and precision than traditional laboratory methods.

In the early stages of COVID-19 vaccine development, 
AI-powered reverse vaccinology tools such as Vaxign-ML 
and MARIA were used to model peptide binding to human 
leukocyte antigen (HLA) molecules—an essential step in 
eliciting adaptive immune responses. These tools enabled 
the rapid identification of viral components like the Spike (S), 
Nucleocapsid (N), and Membrane (M) proteins, which formed 
the basis for authorized vaccines including Pfizer/BioNTech’s 
Comirnaty and Moderna’s mRNA-1273 [46]. Complementing 
these efforts, DeepMind’s AlphaFold algorithm enabled 
accurate protein structure prediction, accelerating the 
design of vaccine candidates by replacing time-consuming 
traditional methods like X-ray crystallography [8].

AI also supported efforts to improve vaccine inclusivity 
across populations. Programs like EvalMax and OptiMax, 
developed at MIT, incorporated genetic diversity in HLA 
haplotypes to predict how various racial and ethnic groups 
would respond to specific antigenic peptides. This approach 
demonstrated that the Spike protein alone might not be 
immunologically sufficient for all populations, encouraging 
the inclusion of additional epitopes to strengthen immune 
responses [46,47].

Optimizing Response and Resource Allocation

AI plays a pivotal role in optimizing infectious disease 
response strategies by enabling real-time, systems-level 
decision support. During public health emergencies, timely 
decisions about resource allocation, intervention timing, 
and risk prioritization are critical. AI helps public health 
authorities synthesize dynamic and high-volume data into 
actionable strategies, enhancing the speed and precision of 
outbreak response.

Rather than replacing traditional outbreak tools, AI 
augments them by integrating multiple data sources—
such as mobility patterns, healthcare system capacity, and 
behavioural indicators—into coordinated frameworks for 
action.48 These models enable governments to anticipate 
surges in hospital demand, allocate medical resources 
efficiently, and adapt interventions in response to rapidly 
evolving epidemic conditions [49,50].

For example, AI has supported adaptive NPI planning 
by continuously analysing real-time data to adjust control 
measures without exceeding healthcare system capacity [30] 
Similarly, AI-based models significantly enhance vaccination 
strategies by enabling precise targeting, adaptive planning, 
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and efficient resource use [45].

As public health systems face increasingly complex 
and globalized threats, AI’s capacity to support proactive, 
scalable, and adaptive response strategies will be essential 
to improving the resilience and equity of infectious disease 
control efforts.

Enhancing Public Health Communication 

Accurate public communication is vital in infectious 
disease control, particularly during pandemics when fear and 
misinformation can undermine health interventions. AI has 
proven effective in mitigating these risks by monitoring digital 
platforms and enabling real-time, targeted communication.

AI tools using NLP have been deployed to analyse online 
content from platforms such as Twitter and Reddit. These 
systems can detect misinformation trends, analyse sentiment 
shifts, and help authorities intervene with accurate messaging 
[8]. For example, NLP-based sentiment analysis has been 
used to analyse vaccine hesitancy during COVID-19 [51,52]. 
Another application was the WHO’s AI-powered chatbot, 
which provided timely, verified information to global users 
during the pandemic. It served as a trusted communication 
channel, reducing anxiety and countering misinformation 
at scale [53]. Beyond information dissemination, these 
tools reinforce behavioural epidemiology by informing risk 
communication strategies. Monitoring digital concerns 
allows for responsive public health messaging, increasing 
compliance with control measures, and strengthening 
epidemic response [54].

Future Prospects of AI in Infectious Disease 
Prevention and Control

AI is poised to revolutionize global infectious disease 
prevention and control, offering unprecedented capabilities 
to enhance public health responses by improving their 
scalability, timeliness, and precision [43].

One of the most significant advancements lies in the multi-
modal data integration into global real-time surveillance 
networks. Future AI systems are projected to seamlessly 
integrate diverse data sources, including genomic sequences, 
behavioural trends, mobility patterns, and environmental 
indicators [55]. For example, Boston University’s BEACON 
platform is an open-source AI-powered surveillance system 
that integrates data from multiple disease-tracking sources, 
uses AI to analyse and translate information, and produces 
human-verified reports—supporting real-time, multi-modal 
global disease monitoring and information sharing [56]. The 
US Centres for Disease Control and Prevention is already 
leveraging AI and ML within its Data Modernization Initiative 

to incorporate non-traditional data sources such as images, 
audio, social media, and EHRs to improve surveillance speed 
and accuracy, accelerate outbreak response, and enhance 
vaccine safety monitoring [57]. Research projects, like the 
NIH-funded VentNet, demonstrate ongoing efforts in multi-
modal data integration for clinical decision support, using ML 
on EHR data and planning to incorporate imaging to predict 
outcomes like respiratory failure in COVID-19 patients [58].

Generative AI is emerging as a critical tool, particularly 
in accelerating therapeutic discovery, vaccine development, 
and drug design. These models, alongside sequence-to-
structure prediction and GNNs, are expanding the landscape 
of innovation [59]. Companies like Evaxion are actively using 
AI to simulate the immune system and create predictive 
models to identify novel targets for vaccines [60]. These 
AI innovations enable rapid and efficient screening of vast 
numbers of molecules, significantly reducing the time 
and cost associated with developing new pharmaceutical 
compounds and vaccine candidates [61].

Furthermore, AI-driven behavioural modeling is 
anticipated to become more sophisticated, allowing public 
health officials to better anticipate public responses to 
containment measures and understand factors influencing 
vaccine uptake [54]. Cutting-edge research utilizes generative 
multi-agent systems, powered by LLMs, to simulate complex 
human behaviours, including vaccine hesitancy dynamics and 
adherence to non-pharmaceutical interventions during public 
health emergencies [62]. These simulations can provide 
valuable insights for informing public health policy.AI-powered 
tools are also expected to advance health equity, particularly 
in low- and middle-income countries (LMICs). Cloud-based 
diagnostics, mobile health apps, and remote monitoring 
platforms will allow for early detection, risk assessment, 
and disease management even in settings with limited 
infrastructure. The expansion of wearables and telemedicine 
will further improve health outcomes and service delivery in 
remote settings [43]. These tools can be used for diagnosis, 
morbidity or mortality risk assessment, disease outbreaks 
and surveillance, and health policy and planning [63].

The collective application of these AI innovations 
promises to usher in an era of more proactive, precise, and 
equitable public health responses, capable of tackling the 
evolving challenges posed by infectious diseases globally.

Challenges

Data Quality, Representativeness, and 
Algorithmic Bias

The utility of AI in infectious disease prevention and 
control is fundamentally dependent on the quality, diversity, 
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and representativeness of the data used to train its models. 
In many LMICs, the scarcity of high-quality, standardized, 
and interoperable datasets presents a critical barrier. 
Incomplete, inconsistent, or outdated data can result in 
unreliable AI predictions, thereby compromising timely and 
effective responses to disease outbreaks [3,43].

A central concern is algorithmic bias arising from 
unrepresentative training data. Many AI systems are 
developed using datasets predominantly from high-income 
countries (HICs), limiting their generalizability to LMICs 
and underrepresented populations [43]. Such bias can 
lead to distorted epidemiologic predictions and exacerbate 
existing health disparities. For instance, U.S. COVID-19 
mortality data have been shown to underreport deaths 
among Black and Hispanic populations by up to 60% due 
to missing race information—an issue both moral and 
methodological [64]. Moreover, structural bias in data 
collection can cause AI models to reach accurate-seeming 
but misleading conclusions. One striking example involved 
image-classification models trained to detect COVID-19 
using chest radiographs. When children’s chest X-rays were 
used as a control group, the models effectively distinguished 
adults from children, rather than identifying infection status. 
In fact, prediction remained possible even after lung areas 
were removed from images, simply based on the dataset 
source. This suggests that the standard testing protocols 
used in many studies on automated COVID-19 diagnosis may 
be biased, leading models to learn dataset-specific features 
rather than medically relevant information [65].

In vaccine development, biases in healthcare access 
and reporting further contribute to unequal performance 
and safety across populations. When AI models are trained 
on data primarily from HICs, resulting vaccines may be less 
effective or safe in LMICs, exacerbating global inequities and 
hindering broad-based immunization success [8].

Data Governance, Privacy, and Security

Beyond the quality and representativeness of data, 
how this information is governed, protected, and who has 
access to it poses another significant set of challenges. The 
integration of AI into infectious disease surveillance has 
amplified long-standing concerns around data governance, 
individual privacy, and security. AI systems frequently rely 
on sensitive health information—including personal medical 
records and genomic data—to model disease risks and 
inform interventions [8]. As surveillance networks expand, 
so do the risks associate with breaches and unauthorized 
access to personal data [3].

These concerns are compounded by the use of 
increasingly granular and unconventional data sources. AI 

models now incorporate digital traces from wearable devices, 
connected health apps, and “digital exhaust” generated by 
users interacting with online platforms [66]. While these 
inputs enhance model accuracy, they also raise the risk of 
re-identification, especially when datasets are combined 
across systems or inadequately anonymized. The scale and 
intrusiveness of such data collection challenge existing 
norms of consent and confidentiality in public health [67].

New computational approaches, such as federated 
learning, have been explored to mitigate privacy risks in AI-
powered surveillance. In this framework, analytical models 
are deployed to individual devices where data remains 
locally stored. Aggregated insights are then returned to a 
central system without transferring the underlying personal 
data. A recent study used federated learning in smartphone-
based infectious disease surveillance, illustrating a method 
that reduces central data storage risks while maintaining 
analytical capability [7].

Despite such technical developments, public unease 
about the potential misuse of health data remains high. The 
challenge of balancing public health objectives with personal 
data protection is further complicated by the need for large, 
open datasets to advance epidemiologic modeling and 
prediction. In the absence of clear regulatory boundaries, 
privacy risks can undermine trust and hinder participation 
in AI-driven disease surveillance.

Technical Barriers and Model Limitations

Even with well-governed and high-quality data, the 
inherent characteristics and current limitations of AI models 
themselves present distinct technical hurdles. One of AI’s 
most persistent technical limitations in infectious disease 
prevention and control is the risk of overfitting. Overfitting 
occurs when a model learns not only the underlying patterns 
in the training data but also the noise, resulting in high 
apparent accuracy during training but poor generalization to 
new, unseen data [3,55].

This problem is especially acute when models are 
trained on small or biased datasets—common in early-stage 
outbreaks or low-resource settings—leading to predictions 
that cannot adapt to evolving epidemiological conditions [7].

This challenge is compounded by the “black box” nature 
of many deep learning models. These systems often lack 
transparency in their internal decision-making, making it 
difficult for users to interpret or validate predictions [68] In 
public health contexts where decisions must be accountable 
and evidence-based, this lack of explainability undermines 
trust and may limit adoption by clinicians, epidemiologists, 
or policymakers.
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Another concern is the potential for deep learning 
algorithms to amplify existing biases. When models are 
trained on datasets that reflect historical or structural 
inequities, such as underrepresentation of certain 
populations or regional disparities, they may reproduce 
or even intensify these patterns in their predictions [69].  
In infectious disease contexts, such skewed outputs could 
affect disease burden estimates, resource allocation, or even 
diagnosis rates across different communities.

Finally, most general-purpose AI models, such as those 
designed for open-ended text or speech tasks, are not 
currently equipped to handle specialized epidemiological 
questions or concepts. Integrating single-task models into 
more general frameworks remains a future goal rather than 
a present reality. Furthermore, these foundation models 
are typically developed by large technology firms at high 
cost, making downstream fine-tuning for public health 
applications both unsustainable and inequitable [20].

Transparency, Explainability, and Public Trust

The opacity of many AI models presents a major barrier 
to their integration into infectious disease prevention and 
control systems. Often referred to as “black-box” algorithms, 
these models—especially deep learning systems—lack 
transparency in how they process inputs and generate 
outputs. This can erode clinical trust and make it difficult for 
public health professionals to interpret, validate, or act on 
AI-generated predictions [43,55]. Without sufficient clarity 
on decision-making pathways, AI systems may fail to gain 
traction in real-world public health workflows.

This challenge is particularly acute in clinical settings, 
where practitioners are trained to rely on empirical 
evidence and observable reasoning. AI outputs that lack 
interpretability may be dismissed or underutilized, even 
if technically accurate. In epidemic modeling, the problem 
extends further: many current AI-based models struggle to 
offer mechanistic insights into transmission dynamics or 
disease behaviour. As a result, their generalizability across 
populations, pathogens, or geographies remains limited 
[20].

To address these issues, researchers have developed 
approaches known as explainable AI (XAI), which aim to 
clarify the rationale behind AI decisions [70]. However, 
XAI is not a complete solution. One persistent risk is “false 
confirmation,” when both humans and AI agree on an 
incorrect decision [2].

Beyond clinical and scientific use, AI’s opacity also 
complicates its acceptance in the public domain. Traditionally, 
public health decisions have been communicated by trusted 

figures such as epidemiologists or health officials, relying 
on a blend of data, expertise, and human judgment. The 
introduction of AI as a decision-making agent introduces an 
unfamiliar, abstract actor into this space-one that the public 
may not intuitively trust [71].

Public skepticism can be exacerbated when AI-driven 
guidance conflicts with traditional expert consensus or 
produces recommendations that appear counterintuitive. 
Moreover, inconsistent media narratives—ranging from 
exaggerated optimism to alarmist warnings-further distort 
perceptions of AI’s capabilities and limitations. In the context 
of infectious disease forecasting, either a hyped success or 
a publicized failure may have lasting impacts on public 
confidence. These dynamics present an enduring challenge 
to the legitimate integration of AI into population-level 
health decision-making processes [55].

Ethical Dilemmas and Health Equity

The application of AI in infectious disease prevention 
and control raises substantial ethical challenges. Chief 
among these are concerns regarding patient privacy, 
algorithmic bias, data integrity, equity in healthcare access, 
and the autonomy of both patients and healthcare providers. 
These challenges are especially pronounced when AI is used 
in diagnosis or prognosis, where automated outputs may 
directly influence clinical decisions and population-level 
interventions [43].

AI systems trained on non-representative datasets may 
perpetuate or exacerbate existing health disparities, resulting 
in unequal availability of care or reduced model accuracy 
for underrepresented populations [72]. For example, AI 
models trained on historical data may perpetuate health 
care disparities by reinforcing biases against protected 
populations, highlighting the need for AI systems to be 
designed and evaluated with principles of distributive 
justice to ensure equitable outcomes [73]. These challenges 
highlight the importance of transparency and accountability 
in the ethical deployment of AI in healthcare.

Various ethical frameworks have been proposed to 
guide the responsible development and deployment of AI 
in public health. For instance, the WHO’s 2021 guidance 
outlines six consensus principles: protecting autonomy; 
promoting human well-being, human safety, and the 
public interest; ensuring transparency, explainability, and 
intelligibility; fostering responsibility and accountability; 
ensuring inclusiveness and equity; and promoting AI that is 
responsive and sustainable [1]. Ethical codes have also been 
proposed by regional and global actors such as the Council 
of Europe and Gavi, reflecting a growing awareness of the 
moral complexity involved in deploying AI at scale [2].
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Misinformation and Disinformation

The societal impact of AI also extends to the information 
ecosystem, where its capabilities can unfortunately be 
harnessed to spread harmful narratives. The rapid spread of 
misinformation facilitated by AI has posed another critical 
challenge during health emergencies. AI-powered content 
recommendation systems and social media algorithms have 
accelerated the circulation of false or misleading information, 
especially during the COVID-19 pandemic. One large-scale 
study analysed 80 million posts from nearly 77,000 Twitter 
(now X) users over 18 months and found that those who 
spread COVID-19 misinformation exhibited nearly twice the 
level of anxiety compared to other users [74]. This dynamic 
not only distorted public understanding of the outbreak but 
also imposed measurable psychological harm, underscoring 
the broader societal costs of AI-amplified misinformation 
[8].

Regulatory Gaps and lack of standardization

Navigating these complex ethical and societal challenges, 
from ensuring data integrity to combating misinformation, 
necessitates robust governance frameworks; however, 
the rapid pace of AI development has far outstripped the 
capacity of most regulatory frameworks to ensure safe and 
responsible implementation. In the domain of infectious 
disease prevention and control, this regulatory lag presents 
major obstacles to the safe deployment of AI systems. AI 
algorithms used for diagnosis or surveillance may lack 
clearly defined pathways for clinical validation, post-
market surveillance, or liability assignment, particularly 
in countries with an underdeveloped legal infrastructure 
[75,76]. Ambiguities in accountability for AI-generated 
recommendations further complicate efforts to ensure 
transparency and legal compliance in public health settings 
[77].

Recognizing these limitations, global bodies such as 
the WHO have begun issuing high-level guidance. The WHO 
“Regulatory considerations on artificial intelligence for 
health” emphasizes the importance of pre-market validation, 
continuous documentation, risk monitoring, and stakeholder 
engagement to ensure transparency and traceability [78]. 
However, national-level regulatory structures remain 
fragmented, leading to inconsistent compliance standards 
and gaps in oversight.

Regulatory challenges are compounded by the inherently 
cross-border nature of disease outbreaks. AI systems used 
for global health surveillance require coordination across 
jurisdictions with differing laws, capabilities, and ethical 
norms. The COVID-19 pandemic demonstrated that, despite 
rapid technical advances, a lack of harmonized regulatory 

cooperation can undermine the utility of AI-powered 
surveillance tools. Without mechanisms for international 
coordination, the deployment of AI in epidemic response 
may be hindered, regardless of technical readiness [7].

Infrastructure, Cost, and Workforce Limitations

Beyond the need for clear rules and ethical guidelines, 
infrastructure gaps present one of the most significant 
barriers to the integration of AI in infectious disease 
prevention and control, particularly in LMICs. In many of 
these settings, healthcare facilities lack the foundational 
digital infrastructure, such as EHRs, diagnostic equipment, 
and functional internet connectivity, required to implement 
AI systems [79]. These limitations are compounded by 
unreliable electricity supply, which directly affects the 
continuous operation of AI-powered tools [43].

Even in HICs, the integration of AI tools into healthcare 
environments is challenged by the incompatibility of legacy 
systems. Many hospital management platforms, public 
health databases, and electronic medical records were built 
decades ago and were not designed to accommodate the 
high-volume, dynamic, and real-time nature of AI algorithms. 
Contemporary AI models often rely on specialized 
computational environments, deep learning libraries, 
and data formats that are difficult to align with existing 
software and infrastructure. This incompatibility can pose 
a substantial risk of operational disruption and data loss 
during attempted integration [55].

The cost of adopting AI technologies also poses a 
formidable obstacle. Beyond the initial investment in hardware 
and software, AI deployment requires ongoing expenditures 
for maintenance, system upgrades, and secure data storage 
[80]. The collection and curation of high-quality, large-
scale datasets—essential for AI performance—also incur 
considerable costs, as do the implementation of data privacy 
safeguards [81]. These financial burdens can be prohibitive, 
especially in resource-constrained health systems.

Equally critical is the issue of workforce preparedness. 
Successful AI implementation depends on a health workforce 
that is literate in data science and AI systems. However, there 
is a notable shortage of healthcare professionals with such 
expertise, particularly in low-resource settings. This gap is 
further widened by the migration of skilled workers to more 
developed health systems, which reduces local capacity for 
AI-enabled healthcare delivery. In addition, existing staff may 
resist the adoption of AI technologies due to unfamiliarity or 
perceived threats to professional autonomy [43,82].

Together, these infrastructure and workforce limitations 
highlight the practical barriers that must be addressed before 

https://medwinpublishers.com/JIDTM/


Journal of Infectious Diseases & Travel Medicine
10

Sijia W and Jue L. Artificial Intelligence Empowers Global Infectious Disease Prevention and Control: 
Opportunities and Challenges. J Inf Dis Trav Med 2025, 9(1): 000195.

Copyright©  Sijia W and Jue L.

AI can be reliably and equitably integrated into infectious 
disease surveillance and control.

System Fragmentation and Interdisciplinary 
Collaboration Gaps

Finally, even when resources and expertise are available, 
the effective integration of AI into infectious disease 
prevention and control is often hindered by the structure of 
health systems, the organization of data, and the interplay 
between different disciplines. One of the major challenges is 
the fragmented nature of health data infrastructure. Health-
related data are dispersed across hospitals, community 
clinics, and individual devices such as smartphones and 
wearables. Even within single institutions, departments often 
rely on custom-built systems provided by different vendors, 
resulting in incompatible data formats and restricted 
interoperability [83]. As a result, AI models may be limited 
to operating within narrow data domains, undermining their 
ability to provide comprehensive and generalizable insights 
across diverse patient populations.

The problem of data silos not only limits model scope but 
also affects training quality and representativeness. A lack 
of integrated datasets prevents AI systems from capturing 
the full range of patient variability, particularly among 
populations underrepresented in discrete data systems. This 
fragmentation impedes the development of contextually 
relevant AI models that can consistently perform across 
varied clinical and demographic cohorts [84].

Despite the promise of AI in healthcare, many 
research publications remain focused on isolated technical 
innovations rather than interdisciplinary applications. Most 
AI development does not span the continuum of clinical 
care, infection prevention and control, or broader public 
health systems, this highlights the need for interdisciplinary 
integration and collaboration [85].

Effective integration of AI into public health also 
requires closer collaboration between data scientists and 
domain experts. When AI predictions are presented in 
isolation, they may lack the contextual grounding needed 
for interpretation. In contrast, when AI-generated outputs 
are jointly evaluated with input from epidemiologists and 
public health professionals, they gain both interpretability 
and relevance [55].

Policy and Practice Recommendations

Realizing the transformative potential of AI in infectious 
disease prevention and control will require coordinated 
policy efforts, ethical safeguards, and global collaboration. 
Stakeholders—including governments, healthcare 

providers, technologists, and public health agencies—need 
to work together to create a policy environment that ensures 
equitable, transparent, and responsible AI deployment 
across diverse epidemiological contexts [43].

A priority area involves investing in high-quality, 
representative, and interoperable digital infrastructure. 
Governments and institutions are encouraged to support 
open data systems for infectious disease surveillance that 
enable secure, ethical, and privacy-preserving data sharing 
[86]. Approaches such as federated learning and adherence 
to the FAIR data principles (Findability, Accessibility, 
Interoperability, Reusability)[87] may provide viable 
pathways to cross-border collaboration while protecting 
individual privacy.

To build public trust and ensure accountability, regulatory 
frameworks ought to evolve in step with technological 
advancements. These frameworks could incorporate lifecycle 
monitoring, risk mitigation strategies, and documentation 
processes, as emphasized by the WHO and other regulatory 
bodies [78]. Ethical oversight mechanisms—such as diverse, 
interdisciplinary ethics committees—can help ensure that 
AI systems are reviewed across the development pipeline, 
upholding principles like privacy by design, data minimization, 
and meaningful consent. Furthermore, public engagement 
and consultation may enrich the governance of AI by aligning 
implementation with societal values and expectations [55].

From a technical perspective, model development should 
balance innovation with interpretability and performance in 
real-world settings. Hybrid approaches that integrate deep 
learning with more traditional statistical methods can offer 
advantages in terms of both accuracy and explainability [55]. 
It is advisable to evaluate AI models not only on predictive 
performance but also on calibration, causal interpretability, 
and implementation feasibility [20]. Transparency in model 
architecture, training data, and assumptions—facilitated 
through open-source tools and public review—can further 
support responsible use.

Equity considerations are paramount. Many LMICs 
face challenges in accessing the infrastructure, expertise, 
and financial resources needed for AI development and 
deployment. Promoting open-source AI tools, equitable data-
sharing arrangements, and inclusive global collaborations 
could help address these disparities [43]. AI tools in LMICs 
often underperform when trained on data from HICs and not 
adapted to local contexts. To improve equity, AI development 
should incorporate local data, engage LMIC stakeholders, 
and evaluate effectiveness in real-world settings [88,89].

Ultimately, maximizing the public health benefits of AI 
in infectious disease control requires an integrated strategy 
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that promotes innovation while upholding ethical standards 
and global equity. By embracing inclusive, adaptive, and 
collaborative approaches, stakeholders can better harness 

AI’s potential to improve outbreak preparedness, strengthen 
diagnostics, and advance global health security Figure 1.

Figure 1: AI for Global Infectious Disease Prevention and Control: A Framework of Applications, Challenges, and 
Recommendations.

Conclusion

AI is poised to become a cornerstone of infectious 
disease prevention and control. From enhancing surveillance 
systems and accelerating outbreak detection to supporting 
diagnostics and optimizing vaccine delivery, AI has 
demonstrated significant promise in transforming global 
public health strategies. The COVID-19 pandemic has 
underscored both the urgency and the potential of AI-driven 
tools to address infectious disease threats more rapidly and 
equitably than ever before.

Yet, the path forward is complex. The effective 
application of AI requires overcoming substantial 
challenges—particularly in ensuring data quality, managing 
algorithmic bias, addressing ethical concerns, and closing 
the digital infrastructure gap in low-resource settings. 
Fragmented data systems, limited interoperability, and a lack 
of interdisciplinary collaboration continue to hinder the full 
integration of AI into public health ecosystems.

Crucially, AI must not reinforce existing inequities or 
function as a “black box” devoid of accountability. Building 
trust through transparency, ensuring explainability, and 
promoting public engagement are essential for AI adoption 
in both clinical and community settings. Likewise, regulatory 
frameworks must evolve to ensure safety, effectiveness, and 

fairness while enabling innovation.

Going forward, inclusive global collaboration and 
deliberate policy action will be key to ensuring that AI 
technologies are not only technically sound but also socially 
and ethically aligned with the goals of public health. When 
developed and implemented responsibly, AI can empower 
health systems worldwide to detect, respond to, and prevent 
infectious diseases with unprecedented speed, precision, 
and equity.
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