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Editorial 

Since its first experimental demonstration in 2007 [1], 
CRISPR-Cas9 (short for Clustered Regularly Interspaced 
Short Palindromic Repeats – CRISPR-Associated protein 
9) brought a revolution in biology, especially in the fields 
of gene editing [2] and precision medicine [3]. CRISPR 
offers several advantages, namely accuracy [4], flexibility 
[5], versatility [6] and cost reduction [7] that collectively 
designate it as the most popular approach for gene editing 
[8], supplanting in parallel other technologies such as 
TALENs [9] and ZFNs [10].  

 
Similar to TALEN/ZNFs, CRISPR-Cas9 relies on the 

precise introduction of DSBs (Double Strand Breaks) in 
the target genome [11], facilitated by the interaction of 
complementary small RNAs, known as sgRNAs (Single 
Guide RNAs) with the Cas9 effector protein [12]. The 
sgRNA/Cas9 ribonucleoprotein complex interacts with 
genomic DNA via sgRNA/genomic DNA R-loop formation 
[13, 14], guiding wild type Cas9 to introduce DSBs via its 
nuclease activity in a precise manner [15]. Host genome 
DNA repair mechanisms, such as Non-Homologous-End 
Joining (NHEJ) and/or Homology-Directed Repair (HDR) 
recognise and repair DBS formation, resulting either in 
the introduction of mutating Insertions/Deletions 
(InDels) in the case of NHEJ [16], or precision gene editing 
and Single Nucleotide Polymorphism (SNP) repair in the 
case of HDR [17]. 

 
Targeted mutations can restrict or completely abolish 

cas9 nuclease activity, converting it into a nickase (nCas9, 
[18,19]) or a catalytically inactive protein (dCas9, [20]) 
that retains its DNA-interacting properties. These 

engineered flavours of Cas9 contribute to the reduction of 
its greater side-effect, generation of off-target effects [21], 
while expanding the repertoire of CRISPR applications 
from a mere gene editing tool to a technology that allows 
in vivo biotagging [22] and/or transcriptional 
transactivation/repression through direct endogenous 
promoter interactions [23].  

 
Applications of CRISPR-Cas9 greatly expanded our 

knowledge in various organisms such as bacteria [24], 
yeast [25], worms [26], insects [27], plants [28] and 
animals [29-32], fuelling an active debate as to whether 
this technology is safe enough for human gene editing 
clinical trials [33]. The benefits are obvious: precision 
medicines, treatment of hereditary disease, 
stalling/curing of cancer progression [34], are just a few 
of the exciting opportunities arising from the technology 
[35].  

 
However two recent papers published in Nature 

Medicine highlight the important biases and dangers that 
accompany CRISPR-Cas9 mediated editing in human cells. 
The first paper refers to a CRISPR-Cas9 dropout screen in 
retinal pigment epithelium cells (RPE1) [36]. Such screens 
rely on a lentiviral pool of sgRNAs, designed to target 
hundreds to thousands of genes, for transducing Cas9-
expressing cells. The successfully transduced cells are left 
to propagate for a limited period before being subjected 
to Next Generation Sequencing (NGS)-based screening. 
The concept is obvious: sgRNAs targeting genes that are 
pivotal for the survival of cells under the screening 
conditions will be eliminated from the pool resulting into 
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a detectable distortion in the composition of sgRNA 
expressing cells in the NGS results, leading towards the 
identification of the corresponding target genes [37].  

 
The authors report that Cas9-induced DSS activate 

p53, a well known tumor-suppressor that acts as a master 
regulator of DNA damage response [38], leading to cell 
cycle arrest and introduction of a growth disadvantage 
that eventually shifts the balance from HDR (precision 
editing) to NHEJ (imperfect repair/introduction of InDels) 
[36]. The growth defect was chemically dampened with 
the use of nutlin-3a, an inhibitor of p53 [36]. However 
general inhibition of p53 via nutlin-3a leaves the recipient 
cell vulnerable to major genetic abrogations, such as 
chromosome rearrangement/loss, accumulation of 
mutations and malignant transformation, renting this 
approach unsuited for safe therapeutic use of CRISPR-
Cas9 mediated gene editing. 

 
In a parallel study, scientists from Novartis conducted 

genetics screens in human pluripotent stem cells (hPSCs). 
Despite of their great therapeutic potential, screens in 
hPSCs have been impeded on the generally low efficiency 
of these cells to genetic engineering [39]. CRISPR-based 
editing offers great precision and together with the 
pluripotency of hPSCs provides an attractive therapeutic 
tool. Strikingly, the increased mutagenic efficiency of 
CRISPR in the hPSCs in the case of the Novartis study was 
accompanied with severe toxicity leading to a dramatic 
decrease in the percentage of surviving cells [39]. This 
toxicity was tightly linked to the generation of DSBs that 
were induced by targeting sgRNAs, persisted even under 
short induction of Cas9 expression and was not observed 
in hPSCs transduced with scrambled sgRNAs [39]. 
Additional experiments narrowed down the cause of this 
DSB-induced toxicity again to a P53-depended action [39]. 

 
These two studies collectively highlight the risk of 

deploying CRISPR-Cas9 as a therapeutic gene editing tool, 
nailing down the cause of the observed toxicity into the 
role of the p53 tumor-suppressor gene. CRISPR-Cas9 
holds a great therapeutic potential, calling for a need to 
develop novel chemical and/or genetic approaches so as 
to eliminate the observed p53 complications. Our 
designing efforts should not focus on the general 
inhibition of p53 since this would increase the 
tumorigenicity of the engineered cell. Instead we should 
develop compounds that transiently block p53 function 
and/or block Cas9 mediated genotoxic stress ensuring 
both efficient gene editing and subsequent p53 anti-
tumorigenic protection for the engineered human stem 
cell. 
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