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Introduction 

Internal reference redox scales or internal reference 
redox systems, IRRS, are reversible or nearly reversible 
redox systems used to provide a known and stable 
reference point in non-aqueous solvents in conditions 
where reliable reference electrodes are difficult to be 
established and/or stabilized [1,2]. In general, the IRRS is 
used in conjunction with quasi-reference electrodes [3-8]. 
They have a long story, which began with the concept of 
Rb|Rb+ or Rb(Hg)|Rb+, followed by the use of 
organometallic redox couples [9]. In order to limit the 
number of redox systems used as IRRS and then made 
easier the comparison, IUPAC recommended in 1983 that 
the systems ferrocene|ferrocenium, Fc0/+, and 
bis(biphenyl)chromium(0)|bis(biphenyl)chromium(I), 
BCr0/+, need to be used as internal reference redox 
systems in non-aqueous media. These two complexes 
were selected arbitrarily from several published redox 
systems.  

 
An effective IRRS must possess a number of 

properties. Many of which were suggested by Gritzner 
and Kuta in their IUPAC recommendation [9], and most of 
which can be deduced by common sense. We recently 
suggested the following to be essential properties of an 
IRRS [10]: 
 The OXIRRS/REDIRRS redox couple (OXIRRS + e–  REDIRRS; 

being OXIRRS and REDIRRS the oxidised and reduced form 
of the IRRS, respectively) must be reversible or nearly 
reversible under the operative measurement 
conditions. It is advantageous for the IRRS electron 

transfer to be a simple one-electron outer-sphere 
electron transfer. 

 It is very important that the IRRS redox moieties do not 
specifically interact with the working electrode (e.g., 
they do not adsorb on the working electrode). 

 The mid-point potential for the IRRS should not overlap 
the active potential zone of the analyte (ANS) under 
study. 

 The initially present IRRS redox component, OXIRRS or 
REDIRRS, must be stable over the time period of 
experimentation; it should not react (or interact) with 
the solvent, supporting electrolyte or ANS. 

 The IRRS redox moiety, OXIRRS or REDIRRS, which is not 
initially present, must be stable on the time scale 
required to execute the slowest cyclic voltammetry 
(CV). 

 The molecule or salt that is the source of the selected 
IRRS component should be pure, easily synthesized, or 
otherwise, readily available and should have a long 
shelf life. 

There are also some constraints and requirements for the 
ANS [10]: 
 The ANS is initially present as either an oxidizable 

moiety (REDANS) or reducible moiety (OXANS). It is 
worth noting that REDANS and OXANS species may or 
may not be redox partners, and the oxidation of REDANS 
and reduction of OXANS may be complicated. 

 The initially present ANS moiety should be stable and 
should not react with the IRRS. 

 
It is necessary to notice that IUPAC recommendation 

has been proposed for organic solvents and their 
mixtures. By extrapolation from those systems, the Fc0/+ 
redox couple is also being used as an IRRS in ionic liquids, 
ILs [2,11-13,3].  
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Nowadays, it is well known that Fc is not an ‘ideal’ 
redox process as mentioned in the IUPAC 
recommendation, as its formal potential is highly 
dependent on the solvation effects of the organic solvent 
and supporting electrolyte used, which includes the 
electrostatic interaction of solvent/electrolyte with the 
iron centre and the cyclopentadienyl ring [14,15]. 

 
Decamethylferrocene (DmFc or [FeII(5-C5(CH3)5)2]) 

shows at least an order of magnitude weaker solvent-
solute interaction compared to ferrocene, as the methyl-
substituent groups in the cyclopentadienyl rings prevent 
both specific and non-specific interactions by hindering 
the access of organic solvent and supporting electrolyte 
molecules to the metal centre and to the cyclopentadienyl 
ring [14,16-19]. This observation was also confirmed 
after analysis of the X-ray diffraction patterns of 
decamethylferrocene, which indicate that the inter-ring 
methyl groups of DmFc are within Van der Waals 
distances [20]. Consequently, DmFc is better suited than 
Fc as an IRRS in organic solvents. 

 
Decamethylferrocene is oxidized in organic solvents in 

a reversible, one-electron transfer, process to 
decamethylferrocenium (DmFc+ or [FeIII(5-C5(CH3)5)2]+) 
and reduced back to DmFc according to Equation 1. The 

midpoint potential (Em), calculated from the average of 
the oxidation (Ep

ox) and reduction (Ep
red) peak potentials 

[(Ep
ox+Ep

red)/2],of this redox couple is more negative than 
that of Fc as a consequence of the electron-donating effect 
of the methyl groups (inductive effect), which by pushing 
electron density towards the metal ion facilitates the 
electron removal by the electrode. As given in Table 1, the 
difference in the Em values between Fc0/+ and DmFc0/+ 
varies from a low of 0.413 ± 0.005 V in 
tetrahydrofuran/0.1M [Bu4N][BF4] to a high of 0.614 ± 
0.005 V in dichloromethane/0.1M [Bu4N][TFAB] ([TFAB] 
= [B(C6F5)4]–), which represents a difference of 0.201 V. 
Furthermore, a variation of about 0.152 V can be 
observed by changing the organic solvent from 
tetrahydrofuran to 2,2,2-trifluoroethanol and keeping 
constant the supporting electrolyte nature and 
concentration (0.1M [Bu4N][ClO4]). To minimize 
uncertainties in the comparison of mid-point potentials in 
Table 1, all potentials quoted are relative to the DmFc0/+ 
potential scale. Consequently, since the values presented 
in this table represent the difference in Em, the variation 
in the absolute values of Em of the Fc0/+ and DmFc0/+ IRRS 
may probably be larger than those indicated here. 
 

[FeII(5-C5(CH3)5)2]  [FeIII(5-C5(CH3)5)2]+ + e–  (1) 

 
Solvent Electrolyte Fc0/+ vs. DmFc0/+ (V) Ref 

Diethyl ether 
0.1M [Bu4N][BArF24] a 0.550±0.005 [15] 

0.1M Na[BArF24] a 0.583±0.005 [15] 

Anisole 
0.1M [Bu4N][PF6] 0.518±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.607±0.005 [15] 
Methanol 0.1M [Bu4N][ClO4] 0.497±0.002 [14] 
Ethanol 0.1M [Bu4N][ClO4] 0.473±0.005 [14] 

2,2,2-trifluoroethanol 0.1M [Bu4N][ClO4] 0.575±0.004 [14] 
2-propanol 0.1M [Bu4N][CF3SO3] 0.455±0.003 [14] 

Tetrahydrofuran 

0.1M [Bu4N][BF4] 0.413±0.005 [15] 
0.1M [Bu4N][CF3SO3] 0.438±0.005 [15] 

0.1M [Bu4N][ClO4] 
0.423±0.005 [15] 
0.427±0.002 [14] 

0.1M [Bu4N][PF6] 0.446±0.005 [15] 
0.1M [Bu4N][BPh4] 0.485±0.005 [15] 
0.1M Na[BArF24] a 0.502±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.484±0.005 [15] 
0.1M [Bu4N][BArF24] a 0.521±0.005 [15] 

Pyridine 0.1M [Bu4N][ClO4] 0.517±0.004 [14] 

 
 
 
 
 
 

0.1M [Bu4N]Cl 0.534±0.005 [15] 
0.1M [Bu4N][ClO4] 0.532±0.002 [14] 
0.1M [Bu4N][PF6] 0.548±0.003 [21] 
0.1M [Et4N][BF4] 0.541±0.003 [22] 

0.1M [Bu4N][TFAB] b 0.614±0.005 [15] 
0.1M [C4mPyr][FAP] 0.589±0.003 [22] 
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Dichloromethane 

0.1M [C2mim][FAP] 0.590±0.003 [22] 
0.1M [C2mim][B(CN)4] 0.588±0.003 [22] 
0.1M [C4mim][N(Tf)2] 0.570±0.003 [22] 
0.1M [C4mPyr][N(Tf)2] 0.568±0.003 [22] 

0.1M [C2mim][FSI] 0.569±0.003 [22] 
0.1M [C3mim][FSI] 0.568±0.003 [22] 

0.1M [C4mPyr][N(CN)2] 0.564±0.003 [22] 
0.1M [C4mim][PF6] 0.556±0.003 [22] 
0.1M [C4mim][BF4] 0.557±0.003 [22] 

0.1M [C4mim][CF3SO3] 0.556±0.003 [22] 
1,2-dichloroethane 0.1M [Bu4N][ClO4] 0.532±0.001 [14] 
1,2-dibromoethane 0.1M [Bu4N][ClO4] 0.475±0.007 [14] 

Benzonitrile 

0.1M [Bu4N]Cl 0.524±0.005 [15] 
0.1M [Bu4N][ClO4] 0.523±0.001 [14] 
0.1M [Bu4N][PF6] 0.530±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.543±0.005 [15] 
Bromobenzene 0.1M [Bu4N][ClO4] 0.489±0.005 [14] 
Chlorobenzene 0.1M [Bu4N][ClO4] 0.497±0.001 [14] 

1,2-dichlorobenzene 0.1M [Bu4N][ClO4] 0.535±0.001 [14] 
Benzyl alcohol 0.1M [Bu4N][ClO4] 0.508±0.003 [14] 
Nitrobenzene 0.1M [Bu4N][ClO4] 0.514±0.002 [14] 

Aniline 0.1M [Bu4N][ClO4] 0.527±0.004 [14] 
Toluene [Bu4N][BF4] c 0.430±0.005 [15] 

Acetone 

0.1M [Bu4N]Cl 0.451±0.005 [15] 
0.1M [Bu4N][ClO4] 0.479±0.004 [14] 
0.1M [Bu4N][PF6] 0.487±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.504±0.005 [15] 
Propylene carbonate 0.1M [Bu4N][ClO4] 0.495±0.002 [14] 

Acetonitrile 

0.1M [Bu4N]Cl 0.501±0.005 [15] 
0.1M [Bu4N][ClO4] 0.505±0.002 [14] 
0.1M [Bu4N][PF6] 0.509±0.003 [21] 

0.1M [Bu4N][TFAB] b 0.517±0.005 [15] 

Nitromethane 

0.1M [Bu4N]Cl 0.505±0.005 [15] 
0.1M [Bu4N][ClO4] 0.516±0.004 [14] 
0.1M [Bu4N][PF6] 0.510±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.516±0.005 [15] 
Formamide 0.1M [Bu4N][ClO4] 0.510±0.003 [14] 

N-methylformamide 0.1M [Bu4N][ClO4] 0.510±0.002 [14] 

N,N-dimethylformamide 

0.1M [Bu4N]Cl 0.475±0.005 [15] 
0.1M [Bu4N][ClO4] 0.458±0.003 [14] 
0.1M [Bu4N][PF6] 0.478±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.493±0.005 [15] 
N,N-dimethylacetamide 0.1M [Bu4N][ClO4] 0.455±0.008 [14] 

Dimethyl sulfoxide 
0.1M [Bu4N][PF6] 0.486±0.005 [15] 

0.1M [Bu4N][TFAB] b 0.493±0.005 [15] 
0.1M [Bu4N][ClO4] 0.468±0.001 [14] 

Chloroform 0.1M [Bu4N][ClO4] 0.483±0.001 [14] 

a[BArF24] = [B(C6H3(CF3)2)4]–; b [TFAB] = [B(C6F5)4]–; c the toluene:[Bu4N][BF4] electrolyte is of the 3:1 stoichiometry. 
Table 1: Redox potentials of ferrocene in different organic media and supporting electrolytes. 
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The solvent-Fc interaction is also present in ionic 
liquids. This issue was addressed by studying the effect of 
ionic liquid structure on the mid-point potentials of Fc 
and DmFc in eleven different ILs as well as in 
dichloromethane with added IL as the supporting 
electrolyte [22]. As evidenced in Table 2, a variation in the 
Em of Fc vs. DmFc0/+ of about 0.100 V is observed when 
the IL was changed from [C4mim][CF3SO3] to 
[C2mim][FAP] under neat conditions (water content < 100 
ppm). Similarly, when DmFc and Fc were simultaneously 
present in dichloromethane with added IL as the 

supporting electrolyte-conditions under which DmFc is 
less sensitive to solvation effects-a variation in the Em of 
Fc vs. DmFc0/+ of about 0.050 V was observed when the 
supporting electrolyte was changed from 0.1 M 
[Et4N][BF4] to 0.1 M [C2mim][FAP]. A variable potential 
difference which increases from 0.014 V in the case of 
[C4mPyr][FAP] to 0.082 V in the case of [C4mim][CF3SO3] 
is noticed from the comparison of the Em of Fc vs. DmFc0/+ 
between neat ILs and diluted conditions 
(dichloromethane with added IL as the supporting 
electrolyte) [22]. 

 

IL 
Em vs. DmFc0/+ (V) Em vs. Fc0/+ (V) 

Ref 
Fc Cc+ Cc+ 

[C4mPyr][FAP] 0.575 a -0.747 a -1.322 a [1,22] 
[C2mim][FAP] 0.574 a -0.749 a -1.323 a [1,22] 

[C2mim][B(CN)4] 0.526 a -0.799 a -1.325 a [1,22] 
[C2mim][N(Tf)2] 0.520 a -0.820 a -1.330 a [23,24] 
[C4mim][N(Tf)2] 0.514 a -0.813 a -1.327 a [1,22] 

[C3mPyr][N(Tf)2] 
  -1.325 b [25] 

  -1.327 b [25] 

[C4mPyr][N(Tf)2] 

0.511 a -0.816 a -1.327 a [1,22] 

  -1.363 b [25] 

  -1.333 d [26] 

[S2 2 1][N(Tf)2]   -1.348 b [25] 

[S2 2 2][N(Tf)2]   -1.354 b [25] 

[C3mpip][N(Tf)2]   -1.362 b [25] 
[HmimSC4][N(Tf)2] 0.510 a -0.830 a -1.330 a [23] 

[C2mim][FSI] 0.512 a -0.820 a -1.332 a [1,22] 
[C3mPyr][FSI] 0.510 a -0.822 a -1.332 a [1,22] 

[C2mim][N(CN)2] 
  -1.332 b [25] 

  -1.355 b [25] 

[C4mPyr][N(CN)2] 0.505 a   [1,22] 
[C4mim][PF6] 0.478 a -0.851 a -1.329 a [1,22] 
[C2mim][BF4]   -1.336 c [27] 
[C4mim][BF4] 0.478 a -0.848 a -1.326 a [1,22] 

[C4mim][CF3SO3] 
0.474 a -0.854 a -1.328 a [1,22] 

  -1.362 b [25] 

[C4mPyr][CF3SO3]   -1.347 b [25] 

aPotentials were obtained using a scan rate of 0.1 Vs-1. Em values were obtained with an accuracy of  0.003 V (n=5). bNo 
experimental error was reported. cEm values were obtained with an accuracy of  0.002 V. dEm value was obtained with an 
accuracy of  0.001 V. 
Table 2: Redox potentials of transition-metal sandwich complexes obtained by cyclic voltammetry in different ionic 
liquids. 
 

The cobaltocenium|cobaltocene, Cc+/0 (also known as 
[CoIII(5-C5H5)2]+/[CoII(5-C5H5)2]), redox couple was used 
in organic solvents as an alternative IRRS. It was 
suggested by Strehlok, et al. in 1960 as an IRRS for 
organic solvent systems [28]. Although it was not 

considered by IUPAC as an alternative to the Fc0/+ couple, 
it shows negligible volatility and high stability and 
solubility in some organic solvents [29] and ILs 
[12,23,30,31]. If the cathodic potential window of the 
solvent is large enough, two chemically reversible, one-
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electron reduction processes can be observed (Eqs. 2 and 
3). 
 

[CoIII(5-C5H5)2]+ + e-  [CoII(5-C5H5)2] (2) 
[CoII(5-C5H5)2] + e-  [CoI(5-C5H5)2]–  (3) 

 

The midpoint potential for the Cc0/- couple (Eq 3) was 
found to be considerably solvent dependent and not 
always can be determined accurately at room 
temperature, mainly due to the overlap and interaction of 
this process with the electrochemical response of the 
organic solvent used [29]. Thereby, only the Cc+/0 redox 
couple (Eq 2) has been extensively used in organic 
solvents to provide a known and stable reference point. 
As an extrapolation of concept, it is also used in IL 
systems. Surprisingly, little is known about the solvation 
effect of either different organic solvent with added 
supporting electrolytes or IL structure on the Cc+/0 formal 
potential [2]. 

 
Table 2 reports the IL effect on the Cc+/0 process using 

both Fc0/+ and DmFc0/+ as the IRRS. In the first case, the 
Em of Cc+/0 is almost constant and could be represented by 
a value of 1.327 ± 0.005 V vs. Fc0/+ in 14 different ILs and 
using glassy carbon as the working electrode (exceptions 

are [C2mim][BF4] and [C4mPyr][CF3SO3], where a value of 
1.336 and 1.347 V was reported, respectively). 
Meanwhile, when DmFc0/+ is used as the IRRS, an increase 
of 0.107 V in the potential separation between Cc+/0 and 
DmFc0/+ couples is observed upon changing the IL from 
[C4mPyr][FAP] to [C4mim][CF3SO3]. 

 
To further understand this observation, we need to 

compare the variation in the Em of Cc+/0 vs. Fc0/+ in organic 
solvents with added supporting electrolyte. It is well 
known that Fc is highly sensitive to solvation effects 
under these conditions (see above). As possible to see in 
Table 3, the Em of Cc+/0 in 9 different solvent/supporting 
electrolyte combinations can be represented by an almost 
constant value of about 1.352 ± 0.015 V vs. Fc0/+. As saw 
in Table 1, the Em value of the Fc0/+ redox process varies 
from 0.437 ± 0.005 V in ethanol/0.1M [Bu4N][ClO4] to a 
value of 0.532 ± 0.002 V in dichloromethane/0.1M 
[Bu4N][ClO4], which represents a difference of 0.095 V. 
Meanwhile, the obtained Cc+ Em values vs. Fc0/+ in the 
same two organic solvent systems (with 0.1M 
[Bu4N][ClO4] as the supporting electrolyte) show a 
variation of just 0.008 V (Table 3). 

 

Solvent Electrolyte Cc+/0 vs. Fc0/+ (V) Ref 

Acetonitrile 
0.1M [Et4N][ClO4] -1.350±0.003 [29] 
0.1M [Bu4N][BF4] -1.348±0.003 

[29] 
0.1M [Bu4N][PF6] -1.337±0.005 

Dichloromethane 
0.1M [Et4N][ClO4] -1.359±0.007 [29] 
0.1M [Bu4N][BF4] -1.355±0.007 [29] 

ethanol 
0.1M [Et4N][ClO4] -1.351±0.004 [29] 
0.1M [Bu4N][BF4] -1.356±0.004 [29] 

Water 0.1M Li[ClO4] -1.367±0.002 [29] 
Toluene 0.4M [P6 6 6 14][FAP] -1.340±0.005 [32] 

[P6 6 6 14][FAP] = trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate. 
Table 3: Redox potentials of cobaltocenium hexafluorophosphate in different organic media and supporting electrolytes. 
 

The comparison of data reported in the previous 
tables is of significant value as they suggest that the mid-
point potentials of both Cc+/0 and Fc0/+ couples are 
dependent on the solvation properties of organic solvents 
(with added supporting electrolyte) as well as the 
solvation properties of ILs, particularly under the 
assumption that DmFc0/+ redox couple is a less solvent 
dependent process [2,22]. Consequently, potentials 
reported versus Cc+/0 and Fc0/+ might need to be corrected 
in case of comparison of experimental data obtained in 
different organic solvents or ILs. 
 

Other alternatives, such as 1,1’-dimethylferrocene, 1,1-
diacetylferrocene, ferrocenecarboxaldehyde, etc., could be 

used to provide a stable redox potential in organic 
systems [23,30,33]. However, these IRRS have not been 
fully characterised for this role as yet. 
 

Limitations in the Application of IRRS in 
Ionic Liquids 

 Poor solubility of Fc and DmFc in some ionic liquids, 
mostly in those with high viscosity [31,34,35]. 

 Moderate volatility of Fc [35-37]. 
 Reactivity of Fc+ with the IL components: generally 

observed when the anodic potential window of the IL is 
close to the formal redox potential of Fc0/+ [23,31]. 
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 The Em of Fc0/+ redox process differs from the Eo′: this 
effect is related to the inequality in the diffusion 
coefficients of Fc and Fc+ in almost all known ILs 
[11,35].  

 Reactivity of decamethylferrocene in the presence of 
oxygen [34]. 

 

Selection of an Internal Reference Redox 
Scales for Voltammetric Measurements 

As a conclusion, good practice for electrochemistry 
dictates that the appropriated selection of the IRRS to 
provide a known and stable reference point in 
voltammetry is very important both for organic and IL 
solvent systems. The objective is to choose the IRRS 
(either the OXIRRS or REDIRRS component of a reversible 
redox couple) so that the cyclic voltammetric response for 
the simultaneously present electroactive ANS can be 
observed independently of the IRRS response. This means 
that if the ANS to be studied is in the oxidized form, then 
the reduced form of the IRRS must be added to the 
system. Conversely, if the ANS is in the reduced form, then 
the oxidized form of the IRRS must be added to the 
system. However, it is possible to see a large number of 
published works, which do not follow this basic rule [10]. 

 
The redox potential of Fc and Cc+ are sensitive to the 

solvation properties of the organic solvent or IL 
components. Consequently, the use of Fc+/0 and Cc+/0 
couples as IRRS is expected to be adequate only when a 
single solvent system is being studied. However, 
corrections may be required in conditions that require 
comparison between different solvent systems. Even 
though DmFc is not freely soluble in ILs, the existing 
experimental results suggest that the DmFc0/+ redox 
process is a suitable IRRS for voltammetric studies both in 
organic solvents and in ionic liquids, as it is less 
dependent on the solvent and supporting electrolyte 
nature in comparison to what is observed for ferrocene 
and cobaltocenium. 
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