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Abstract

This article describes the development of microwave-assisted oxyanionic 5-exo-dig cyclization-Claisen rearrangement 
sequence as a convenient “one-pot” route to a variety of seven- and eight membered carbocyclic ring systems. This process 
was used as the key transformation for the construction of several natural products, including frondosins A, B, and C.
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Introduction

Carbocyclic seven- and eight membered rings are found as 
common structural units in a variety of polycyclic natural 
products that have been isolated from several different 
sources, including pathogenic fungi, marine organisms, 
terrestrial plants and insects. Structurally, they represent 
sesquiterpenoids, diterpenoids, sesterterpenoid systems, 
dibenzocyclooctadiene lignans, and polyphenol lignans [1-
3]. Due to their medicinal relevance, numerous research 
groups are actively engaged in developing strategies for 
their construction by synthetic means. However, unlike five 
and six-membered carbocycles which are readily accessible 
through various cyclization reactions, methods allowing the 
construction of seven-membered rings are generally limited 
to processes other than direct intramolecular reactions. 
Among the most important of these are various cycloaddition 
strategies, such as the [5+2] and [4+3] reactions (seven-
membered rings) [4], including several [4+4] and [4+2+2] 

cycloadditions (eight-membered rings) [5] (Figure 1). 

Figure 1: Representative natural products containing 
carbocyclic seven- and eight membered carbocyclic rings.
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Sequential Oxyanionic Cyclization/Claisen 
Rearrangement Strategy 

We have recently demonstrated that a variety of 
cycloheptanoid and cyclooctanoid ring systems may be 
conveniently accessed through a previously reported Marvell, 

et al. [6] but largely ignored tandem sequence that involves 
base-catalyzed intramolecular cyclization of appropriately 
substituted acetylenic alcohols, followed by in situ 
[3.3]-sigmatropic rearrangement (Claisen rearrangement) 
of the intermediate 2-alkylidenetetrahydrofurans (Figure 2) 
[7].

Figure 2: Strategies for the construction of seven- and eight-membered ring systems via tandem oxyanionic cyclization/
Claisen rearrangement sequence.

The requisite allyl vinyl ether precursor in these reactions 
(Figure 3) is produced as a transient species through a 5- or 
6-exo dig process, which involves the intramolecular addition 
of an alkoxide moiety to a proximal triple bond (Figure 3). 
Upon heating, this intermediate undergoes in situ [3,3] 
sigmatropic rearrangement, affording a cyclohept-4-enone 
or cyclooct-5-enone derivative. In a typical case, this tandem 
cyclization-Claisen rearrangement process is effected simply 

by treatment of an appropriately substituted acetylenic 
alcohol, dissolved in phenetole or DME with approximately 
10 mol-% of LiHMDS (or MeLi), and heating the mixture to 
150-210 °C for approximately an hour (most conveniently 
under microwave irradiation). Table 1 highlights some of the 
cycloheptanoid compounds that are accessible through this 
methodology.
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Figure 3: General strategy for the synthesis of polycyclic carbocyclic seven- and eight-membered ring systems via tandem 
cyclization/Claisen rearrangement.

Entry 4-Alkyn-1-ol Conditionsa Product Yield (%)

1 210 °C
45 minb 77

2 200 °C
15 minc 77

3 200 °C
30 minc 63

4 185 °C
60 mind 76

Table 1: Synthesis of seven-membered carbocyclic structures by sequential 5-exo cyclization/Claisen rearrangement strategy.
aReactions were performed using a CEM microwave (unless otherwise noted) oven in the presence of 10-15 mol-% MeLi. 
bphenetole was used as the solvent. c DMF was used as the solvent. d Reaction was done using conventional heating (oil bath).

Figure 4: Strategies for the synthesis of cyclooctanoid derivatives.
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Our initial attempts to apply of these strategies for the 
synthesis of eight-membered ring systems were met with 
failure, stemming largely from the inability of 5-alkyn-1-ol 
precursors to undergo 6-exo isomerizations. These issues 
were ultimately resolved by two different strategies: a) 
“activating” the triple bond with an electron withdrawing 
group prior to cyclization [8] and 2) taking advantage of the 
Thorpe-Ingold effect [9]. Examples of these strategies are 
highlighted in Figure 4.

Application to Natural Product Synthesis: 
The Frondosins

Frondosins A–E comprise five related novel 
sesquiterpene hydroquinone derivatives recently isolated 
from the Micronesian marine sponge Dysidea frondosa [10]. 
All members of the frondosin family (A–E) are antagonists 
of interleukin-8 (IL-8) and inhibitors of protein kinase C 
(PKC) in the low micromolar range [11]. In addition to being 
involved in cellular inflammatory events, IL-8 is now known 
to also play an important role in tumor progression and 
metastasis in several human cancers, including lung cancers 
[12]. It is has also been reported that IL-8, along with growth-
regulated oncogene alpha, is involved in chemoattraction, 

neovascularization and stimulation of HIV-1 replication 
both in T-lymphocytes and macrophages [13]. Importantly, 
it has been demonstrated that compounds which inhibit the 
actions of IL-8 also inhibit HIV-1 replication [14].

As an example, the bicyclic 6-7 core of frondosin B 
was readily constructed in a “one-pot” procedure from 
the optically active secondary alcohol 2 (prepared from 
the corresponding ketone via CBS reduction) as depicted 
in Figure 5 [15]. The resulting ketone was subsequently 
methylated under kinetic conditions, affording compound 
3 in excellent yield (the stereochemistry of the dimethoxy 
precursor to 3 was unequivocally established by X-ray 
crystallography) [16]. The key step in the remainder of 
the sequence was the Lewis acid induced cyclization of 
hydroquinone 4 which provided the entire tetracyclic 
scaffold of frondosin B. Subsequent isomerization of the 
trisubstituted double bond on the seven-membered ring was 
achieved in refluxing benzene in the presence of catalytic 
TsOH, completing the total synthesis of (–)-frondosin B [15]. 
The formal total synthesis (±) frondosin A was also achieved 
from the common intermediate 3 (racemic analogue) [16] in 
a few additional steps [17].

Figure 5: Total synthesis of (–)-frondosin B.

Figure 6: Total synthesis of (±)-frondosin C.
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Similarly, frondosin C was synthesized according to the 
strategy depicted in Figure 5 [18]. Thus, the key tertiary 
alcohol 6 was readily synthesized from commercially 
available indanone 5 in six steps. Standard cyclization/
Claisen rearrangement strategy involving catalytic base 
and microwave irradiation (MWI) at 210 °C afforded the 
tetracyclic intermediate 7, which was converted to racemic 
frondosin C in four additional steps (Figure 5).

Conclusion

In summary, sequential oxyanionic 5- and 6-exo-dig 
cyclization/Claisen rearrangement has been developed, 
allowing the straightforward synthesis of a number of 
interesting cycloheptanoid and cylooctanoid ring systems. 
The methodology is ideally suited for natural product 
synthesis and has been so far applied to the preparation of 
three meroterpenoid natural products frondosin A, B and C. 
In addition, an asymmetric variant of the process has been 
developed which may be readily employed to access optically 
active cycloheptenone and potentially cyclooctenone ring 
systems [15].
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(±)-Frondosin C and (±)-8-epi-Frondosin C via a Tandem Anionic 5-Exo Dig Cyclization-Claisen Rearrangement Sequence. 
Tetrahedron 63(9): 1899-1906.
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