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Abstract 

Ionizing radiations are necessary evil as everyone is exposed to them intentionally for diagnostic purposes or 

unintentionally from cosmic sources or background radiations. Ionizing radiations are known to cause adverse health 

effects at low to moderate doses whereas high doses are fatal. One of the adverse effects of ionizing radiations is the 

retardation of wound healing . We have studied the effect of different doses of hesperidin on the wound contraction in 

mice whole body exposed to 6 Gy of ͏γ-irradiation. The mice were administered orally with a single dose of 0, 10, 20, 50, 

100, 200, 250 or 500 mg/kg of hesperidin one hour before exposure to 6 Gy of γ-radiation. After 10 minutes of irradiation 

a full-thickness skin wound was produced on the dorsum of Swiss albino mice receiving various doses of hesperidin or 

not before exposure to 6 Gy γ-radiations. Assessment of wound contraction was carried out by capturing the video 

images of the wound on different post-irradiation days until complete healing of wounds and the mean wound healing 

time was determined by daily monitoring the progress of wound healing until complete closure of wounds. 

Administration of 10 to 500 mg/kg body weight of hesperidin resulted in a dose-dependent increase in the wound 

contraction when compared with non-drug treated control. A highest but significant wound contraction was observed for 

100 mg/kg hesperidin at all the post-irradiation days. A complete healing of wounds was observed by day 16 post-

irradiation in the hesperidin treated sham-irradiation group when compared to day 18.7 sham-irradiation group. The 

whole-body exposure of mice to 6 Gy of γ-radiation caused a significant delay in wound contraction and increased the 

mean wound healing time when compared to untreated control animals. Administration of different doses of hesperidin 

before 6 Gy irradiation progressively increased wound contraction and a maximum effect was observed at 100 mg/kg 

thereafter the effect was lesser than 100 mg/kg hesperidin. A similar effect was observed on mean wound healing time 

where the wound healing time was reduced by approximately two days when compared to irradiation alone. Our study 

demonstrates that hesperidin enhances the wound contraction and reduces the mean wound healing time. 
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Introduction 

     A new era had begun with the discovery of X-rays by 
Wilhelm Conrad Roentgen in 1885 in modern science and 
healthcare. Since, then research in nuclear materials, 
science and technology led to the increased use of nuclear 
materials for various applications in industry, medicine, 
science, military and nuclear facilities. The proliferation of 
radioactive materials in various specialties has increased 
the likelihood of accidental/intentional exposure to 
ionizing radiation. In medical field the, ionizing radiations 
have emerged as a powerful tool for the disease diagnosis 
and treatment of cancer or other similar conditions 
preoperatively, postoperatively, or as a sole treatment 
modality to treat cancer [1-3]. As many as half of all 
cancer patients receive some form of radiation treatment 
and despite improvements in radiation techniques, 
patients still experience adverse side effects of radiation 
[4,5]. The acute radiation exposure coupled with 
combined injuries in the form of superimposed skin 
wounds and/or burn injury produce serious clinical 
problems. Combined injuries can also arise from nuclear 
accidents of Chernobyl and Fukushima type, atomic bomb 
explosion and release of radioactive materials by terror 
outfits [6-8]. Irradiation along with other injuries acts 
synergistically, resulting in much greater morbidity 
and/or mortality than the radiation injury alone [10-13]. 
 
     For most patients, wounds heal naturally as the body 
works to heal itself. Yet for those whose healing process is 
delayed or complicated by other conditions, such as age, 
body size, chronic disease, nutritional status, vascular 
insufficiencies, immunosuppressant and radiation 
therapy, the wound site becomes a medical problem 
leading to delayed healing or chronic non-healing wounds 
that require specialized treatment and care [13-15]. 
Interaction of ionizing radiation with wounded tissue 
disrupts normal responses to injury leading to a 
protracted recovery period. Ionizing radiations cause 
damage to various tissues by means of energy transfer 
that generates highly reactive chemical products known 
as free radicals, which can subsequently combine with 
normal body chemicals and react with cellular 
components, leading to intracellular and molecular 
damage [16]. The primary targets of cell damage are 

cellular and nuclear membranes and deoxyribonucleic 
acid (DNA). The skin cells suffer from the cytotoxic effects 
of reactive oxygen species (ROS), generated from the 
interaction between ionizing radiation and water 
molecules in the cells leading to loss of function of skin as 
a protective barrier over the body surface [17]. Other 
events associated with the phase of oxidative stress 
response in the skin are depletion of endogenous intra 
and intercellular antioxidants, enhancement of 
intracellular lipid peroxidation and the induction of 
specific signal transduction pathways that can modulate 
inflammatory, immune suppressive or apoptotic 
processes in the skin that could be detrimental to the 
normal functioning of the skin. To modulate the redox 
(antioxidant/pro-oxidant) balance in vivo, there is a 
general need for safe and effective antioxidants/skin 
protectants. Consequently, supplementation with 
exogenous antioxidants that scavenge ROS and restore 
normal redox state may be beneficial in such cases [18-
21]. 
 
     Lebreton was the first to discover hesperidin in the 
year 1827 in an impure state and it has been investigated 
for its various properties since then [22]. Hesperidin also 
known as hesperitin-7-rhamnoglucoside or hesperitin-7-
rutinoside is synthesized mainly by citrus plants as 
secondary metabolite. It is present in the discarded rinds 
of the ordinary orange Citrus aurantium L.C. sinensis, C. 
unshiu and other species of the Citrus genus [23-26]. 
Hesperidin plays an important role in plant defense and 
the pulpy orange juice contains higher amount of 
hesperidin than the juice without pulp. Sweet oranges 
(Citrus sinensis) and tangelos contain larger amount of 
hesperidin [27]. The analgesic, antiatherogenic, anti-
inflammatory, antibacterial, antioxidant, antiradical, 
diuretic, antiulcer and antiviral properties of hesperidin 
have been intensively studied in various study systems 
[24,28-31].  
 
     Hesperidin improves capillary permeability and 
increases their strength [32]. It facilitates vitamin C in 
keeping collagen in healthy condition and it is also 
required for absorption and use of vitamin C. Hesperidin 
inhibits oxidation of vitamin C in the body and is useful in 
hypertension. It prevents haemorrhages and helps in 
conditions of ruptured capillaries and connective tissues 
and builds a protective barrier against infections [33]. 
Hesperidin is an anti-cancerous, anti-microbial, anti-
allergenic, anti-hypotensive, anti-proliferative and a 
vasodilator [34-39]. Hesperidin has been found to be 
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hypolipidemic in humans and retard bone loss [40,41]. 
Hesperidin alleviates hypotension, oxidative stress, nitric 
oxide synthase activity, and neurotoxicity. Hesperidin is 
active against Herpes simplex virus, inflammatory bowel 
disease, arthritis, platelet and erythrocyte aggregation 
and infection [24,26,28,42-44]. The sub chronic 
administration of 5% hesperidin for 13 weeks has been 
found to be non-toxic in mice [45]. Hesperidin has been 
found to be non-toxic in animals and humans [31,45]. The 
present study was undertaken to obtain an insight into 
the effect of different doses of hesperidin on the healing of 
deep dermal excision wound in mice exposed to 6 Gy 
whole-body γ-radiation. 
 

Materials and Methods 

     The animal care and handling were carried out 
according to the guidelines of the World Health 
Organization, Geneva and the INSA (Indian National 
Science Academy, New Delhi). Eight to ten weeks old 
Swiss albino mice of either sex weighing 30 to 36 g were 
selected from an inbred colony maintained under the 
controlled conditions of temperature (23±2°C), humidity 
(50±5%) and light (12 h of light and dark, respectively). 
The animals were given free access to sterile food and 
water. The food consisted of 50% cracked wheat, 40% 
Bengal grams, 4% milk powder, 4% yeast powder, 0.75% 
sesame oil, 0.25% cod liver oil, and 1% salt. Four animals 
were housed in a polypropylene cage containing sterile 
paddy husk (procured locally) as bedding. The study was 
approved by the institutional animal ethical committee of 
the Manipal University, Manipal, India. 
 

Preparation of Drug and Mode of 
Administration 

     Hesperidin (HPD) was procured from Acros Organics, 
Geel, Belgium. Since it is sparingly soluble in water the 
required amount of (HPD) was suspended in 1% 
carboxymethylcellulose (CMC) immediately before 
administration to the animals. The animals were 
administered with a single dose of 0.01 ml/g b. wt. of CMC 
or HPD orally through an oral gavage before irradiation. 
 

Experimental Design 

     This experiment was carried out to evaluate the effect 
of various doses of hesperidin on wound healing in the 
irradiated wounds of mice, where the animals were 
divided into the following groups: - 
CMC+sham-irradiation: The animals of this group 
received 0.01 ml/g body weight of 1% CMC before (0 Gy) 
sham-irradiation. 
 

HPD +sham-irradiation: The animals of this group 
received 10, 20, 50, 100, 200, 250 or 500 mg/kg body 
weight of hesperidin before sham-irradiation. 
 
CMC+irradiation: The animals of this group were 
administered with 0.01 ml/g body weight of 1% CMC 
before 6 Gy irradiation. 
 
HPD +irradiation: This group of animals was given 10, 
20, 50, 100, 200, 250 or 500 mg/kg body weight of 
hesperidin before 6 Gy irradiation. 
 

Irradiation 

     One hour after the administration of CMC or 
hesperidin, each animal was placed into a specially 
designed well-ventilated acrylic restrainer and the whole 
body of the prostrate and immobilized animals was 
exposed to 0 or 6 Gy of γ-radiation, given at a dose rate of 
1.35 Gy/min from a 60Co Teletherapy source (Theratron, 
Atomic Energy Agency, Ontario, Canada). 
 

Production of Full-Thickness Skin Wound 

     The fur of the dorsum (below the rib cage) of each 
animal was removed with a cordless electric mouse 
clipper (Wahl Clipper Corporation, Illinois, USA) before 
exposure to 6 Gy γ-radiation and a full-thickness deep 
dermal excision wound was created on the dorsum 
(below the rib cage) of each animal within ten minutes of 
irradiation [31]. Briefly, the animals were anesthetized 
and the skin of the entire body was cleaned and 
decontaminated by wiping the whole body with sterillium 
(Bode Chemical Co. Hamburg, Germany) disinfectant 
solution. The cleared dorsal surface of the skin was 
marked with a sterile circular (15-mm-diameter) stainless 
steel stencil. A full-thickness cutaneous wound was 
created by excising the skin flap including penniculus 
carnosus in an aseptic environment using sterile scissors 
and forceps. Each wounded animal was housed in an 
individual sterile polypropylene cage. 
 

Measurement of Wound Contraction  

     Wound contraction was monitored by capturing the 
video images of each full-thickness wound with a CCD 
camera connected to a computer [31]. The first image of 
each wound from different groups was obtained one day 
after wounding, and that day was considered as day one. 
The subsequent images were captured on 3, 6, 9, 12 and 
15 days post wounding. The wound area was calculated 
using Auto CAD R14 (Autodesk Inc., San Rafael, CA) 
software. Eight animals were used in each group at each 
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drug dose and a total of 128 animals were used for this 
experiment. 
 

Mean Wound Healing Time  

     A separate experiment was performed to evaluate the 
effect of various doses of hesperidin on the mean healing 
time (MHT) after exposure to 0 or 6 Gy whole-body γ-
radiation except that no attempt was made to capture the 
video images after wounding (for details see above). All 
the animals in each group were monitored until complete 
healing of wounds visually and the day at which each 
wound closed completely was recorded. The mean of all 
the days was considered as mean wound healing time and 
expressed in days. Eight animals were used in each group 
at each drug dose and a total of 128 animals were used for 
this experiment. 
 

Analysis of Data 

     Statistical significance between the treatments was 
determined using one-way ANOVA. The Solo 4 Statistical 
Package (BMDP Statistical Software Inc., Los Angeles, CA, 
USA) was used for data analysis. All data are expressed as 
mean ± SEM (Standard error of mean). 
 

Results 

     The results of wound contraction and mean wound 
healing time are presented in Figures 1-8. 

 

 
Figure 1: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 10 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation. 
Squares: Carboxymethylcellulose; Circles: Hesperidin; Up 
triangles: Carboxymethylcellulose +Irradiation and Down 
triangles: Hesperidin +Irradiation. 

 

 

Figure 2: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 20 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation.  
Squares: Carboxymethylcellulose; Circles: Hesperidin; Up 
triangles: Carboxymethylcellulose +Irradiation and Down 
triangles: Hesperidin +Irradiation. 

 
 

 

Figure 3: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 50 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation. 
Squares: Carboxymethylcellulose; Circles: Hesperidin; Up 
triangles: Carboxymethylcellulose +Irradiation and Down 
triangles: Hesperidin +Irradiation. 
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Figure 4: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 100 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation.  
Squares: Carboxymethylcellulose; Circles: Hesperidin; 
Up triangles: Carboxymethylcellulose +Irradiation and 
Down triangles: Hesperidin +Irradiation. 
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Figure 5: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 200 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation.  
Squares: Carboxymethylcellulose; Circles: Hesperidin; 
Up triangles: Carboxymethylcellulose +Irradiation and 
Down triangles: Hesperidin +Irradiation. 
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Figure 6: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 250 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation.  
Squares: Carboxymethylcellulose; Circles: Hesperidin; 
Up triangles: Carboxymethylcellulose +Irradiation and 
Down triangles:Hesperidin +Irradiation. 
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Figure 7: Acceleration of healing of deep cutaneous 
excision wound in mice treated with 500 mg/kg body 
weight hesperidin before exposure to 6 Gy of γ-
radiation.  
Squares: Carboxymethylcellulose; Circles: Hesperidin; 
Up triangles: Carboxymethylcellulose +Irradiation and 
Down triangles: Hesperidin +Irradiation. 
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Figure 8: Alteration in the mean wound healing time of 
deep cutaneous excision wound in mice treated with 
different doses of hesperidin before exposure to 6 Gy 
of γ-radiation. 

 
 

Wound Contraction 

     The progression of the healing of excision wounds can 
be evaluated by the periodic assessment of wound 
contraction. The area of each wound at a specific time has 
been expressed as the percentage of its original size on 
day one and the data are represented in Figures 1-7. 
Determination of wound contraction by capturing video 
images at different times after irradiation revealed a 
continuous contraction of excision wounds in CMC+ Sham 
-irradiation group (Figure 1). Oral administration of mice 
with different doses of HPD before exposure to sham- 
irradiation showed a progressive increase in wound 
contraction with time depending on the HPD dose, which 
was evident by continuous shrinkage of wound area 
(Figures 1-7). A statistically significant wound contraction 
was observed on day 3 (p < 0.005), 6 (p < 0.01 and 9 (p < 
0.05) after sham-irradiation for all HPD doses, in 
comparison with CMC+ Sham -irradiation group (Figures 
1-7). The degree of wound contraction increased with the 
increase in hesperidin dose up to 100 mg/kg when 
compared with other doses. A further increase in HPD dose 
did not alter this pattern significantly. However, hesperidin 
treatment caused an early closure of wounds when 
compared to CMC+ Sham – irradiation group (Figures 1-

7). The CMC administration led to a thick scab formation, 
whereas HPD treatment resulted in a dose dependent 
reduction in the scab formation with increasing dose. The 
scab formation was completely absent for 100 mg/kg HPD 
and higher doses. 
 
     Exposure of whole body of the animals to 6 Gy irradiation 
resulted in a significant delay in the wound contraction at all 
post-irradiation times (Figures 1-7). Irradiation caused 
formation of a thick scab in CMC+ Irradiation group, 
whereas treatment of animals with different doses of 
hesperidin resulted in a progressive reduction in the scab 
formation, which was thinner and fell earlier when 
compared to CMC+ Irradiation group. The scab formation 
was almost absent in the animals treated with 100 mg/kg 
hesperidin before 6 Gy irradiation. Oral treatment of mice 
with different doses of hesperidin enhanced wound 
contraction in a HPD dose dependent manner and 10 mg/kg 
b. wt. HPD treatment did not have much effect although 
wound contraction was higher than 6 Gy alone (Figure 1). 
When HPD dose was further increased the wound 
contraction increased further and a maximum increase in 
wound contraction was observed in those animals receiving 
100 mg/kg HPD (Figure 4). The wound contraction was 
significantly greater at 3 (p < 0.005), 6 (p < 0.01), 9 (p < 
0.01), 12 (p < 0.05) and 15 (p < 0.05) days post-irradiation 
in the animals treated with 100 mg/kg hesperidin before 6 
Gy irradiation, when compared to CMC+Irradiation group, 
whereas contraction of wound was highest at 6-12 days at 
other doses of HPD (Figures 1-7). 
 
Mean Wound Healing Time: A continuous decline in the 
wound size with the passage of time was observed in 
CMC+Sham-irradiation group (Figure 8). The complete 
closure of wounds was observed by day 18.7±0.61 day 
post-irradiation in CMC+Sham-irradiation group. 
Treatment of mice with 10 or 20 mg/kg HPD did not alter 
the mean wound healing time significantly when 
compared with CMC+Sham-irradiation group. A further 
increase in HPD dose up to 50 mg/kg caused a marginal 
reduction in mean wound healing time when compared to 
sham-irradiation group. The greatest reduction in mean 
wound healing time (16±0.36) was observed for 100 
mg/kg HPD, where the early healing of wounds was 
observed in comparison with the CMC+Sham-irradiation 
group (Figure 8). This reduction in the mean wound 
healing time for 100 mg/kg HPD was statistically 
significant (p <0.05) when compared to CMC+Irradiation 
group. A further increase in HPD dose did not reduce the 
mean wound healing time which remained almost similar 
to that of CMC+Sham-irradiation (Figure 8). 
 
     The whole-body exposure of mice to 6 Gy-radiation 
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significantly delayed the complete closure of wounds as a 
result the mean wound healing time also increased 
(23.33±0.49 days) for CMC+Irradiation group (Figure 8). 
This increase in mean wound healing time was 
approximately 5 days in CMC + Irradiation group when 
compared to CMC + Sham-irradiation group. Oral 
administration of animals with different doses of HPD 
progressively curtailed the wound healing time and a 
maximum attrition in wound healing was recorded for 
100 mg/kg hesperidin, where it reduced to 21.5±0.56 
days (p<0.03), whereas a borderline effect on the mean 
healing time was noticed at other doses of HPD when 
compared with CMC+Irradiation group although the 
difference was not statistically significant (Figure 8).  
 

Discussion 

     The polyphenols, abundant in fruits and vegetables, 
have gained recognition for their antioxidant properties 
and their roles in protecting against chronic diseases such 
as cancer and cardiovascular diseases [33-41,46]. A 
wound is a discontinuity or break in skin associated with 
the disruption of structures and function of the 
underlying tissues and immediate steps are required by 
the wound tissue to restore the continuity and 
physiological functions to avoid any pathophysiological 
implications [31,47]. The healing processes need to go 
smoothly in such a way that it does not lead to any defect 
that shall affect the functioning of the tissue/s. The 
superficial incision wound on the skin are easy to heal and 
generally not defective unless underneath tissues are 
involved. However, deep excision wounds offer a 
challenge as their healing if not directed properly results 
in several complications and morbidity. Therefore, much 
care is required to direct proper healing of deep dermal 
wounded tissues using exogenous stimuli or agents that 
can guide the healing process to heal the wounds 
normally. The ionizing radiations adversely affect the 
wound healing processes and retard wound healing 
cascade leading to non-healing or defective wounds [9-
14]. The supplemental dietary agents may be a useful 
paradigm to properly direct the repair and regenerative 
processes in the irradiated wounds. Therefore, the 
present study was carried out to elucidate the effect of 
different doses of hesperidin on healing of full thickness 
deep dermal excision wounds in mice whole body 
exposed to 6Gy of γ-radiation. 
 
     Wound healing is an orderly process that proceeds in a 
well-orchestrated manner after injury. It starts from 
inflammatory phase, which is triggered by the migration 
of neutrophils from the ruptured blood vessels followed 
by macrophages and lymphocytes at the wound site 

within 1-2 days [48,49]. This is followed by overlapping 
proliferative and maturation and remodeling phases 
which are characterized by several cellular and 
biochemical events that progress in tandem with each 
other [48-51]. The ionizing radiation has multiple 
negative effects on all these phases of wound healing [9-
14]. Wound contraction is an important event of repair 
and regenerative processes and it can be measured 
precisely by taking measurements of deep dermal wound 
by video imaging regularly until complete healing of the 
wound [12,14,15,18-20,31]. Wound contraction is a 
dynamic phenomenon and it can be defined as the 
centripetal movement of the edges of a full thickness 
wound in order to facilitate closure of the defect 
[12,14,15,18-20,31,52,53]. The exposure of mice to 6 Gy 
retarded the healing of wound and this observed delay in 
wound contraction is in good agreement with earlier 
reports, where a similar retardation in wound healing has 
been reported [10,18-21,31]. Treatment of mice with 
different doses of hesperidin prior to whole body 6 Gy 
irradiation resulted in a dose-related acceleration in 
wound healing up to 100 mg/kg, as is evident by an 
increased wound contraction and early closure of wounds 
in the HPD+Irradiation group. The topical application of 
hesperidin has been found to accelerate wound 
contraction and reduce wound healing time in full 
thickness cutaneous wounds in whole body mice exposed 
to 6 Gy γ-radiation in an earlier study [31]. Certain 
nutrient factors including ascorbic acid and curcumin 
have been reported to accelerated early repair and 
regeneration of irradiated wounds in a dose related 
manner and a maximum effect could be observed up to a 
certain dose [10,54]. Similarly, vitamin A supplementation 
and phenytoin sodium improved the acute radiation-
induced delay in wound healing [55,56]. Ascorbic acid, 
curcumin and Nigella sativa extract have been reported to 
enhance healing of irradiated excision wounds in mice in 
different preclinical settings [14,15,18-21]. 
 
     Wound healing involves a cascade of well-orchestrated 
biochemical and cellular events leading to the growth and 
regeneration of wounded tissue in a specific manner and 
the ionizing radiation have been reported to produce 
diverse array of negative effects on wound healing 
processes that includes diminished vascularity, 
impairment of the proliferate capacity of fibroblasts and 
hematopoietic cells and decreased collagen and DNA 
syntheses [14,18-21,57-60]. The retardation in wound 
healing after irradiation may be due to the negative effect 
of radiation on important events of repair and 
regeneration. Ionizing radiation induces severe damage to 
vital tissues, especially those with a high rate of cell 
division, such as hematopoietic tissues that play an 
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essential role in healing of wounds [60]. The ionizing 
radiations have been reported to sustain inflammatory 
phase by secretion of inflammatory cytokines including 
IL-1, IL-3, IL-5, and IL8, decrease fibroblast proliferation 
that lead to reduced extra cellular matrix deposition, 
collagen and DNA syntheses, which result in the impaired 
wound healing or defective wound healing [14,18-
21,57,61]. The acceleration in wound repair and 
regeneration by hesperidin may be due to the 
neutralization of these negative effects in the present 
study. A similar effect has been observed earlier with 
ascorbic acid, curcumin and Nigella sativa extract [14,18-
21]. 
 
     The exact mechanism of acceleration in wound healing 
after hesperidin treatment may not be due to a single 
mechanism, but it could me due to operation of multiple 
mechanisms during the healing of irradiated wounds. The 
presence of HPD may have scavenged the radiation 
induced free radicals thereby neutralizing their effect and 
accelerating the repair and regeneration of irradiated 
wounds. The hesperidin has been reported to scavenge 
free radicals in an earlier study [31]. Irradiation and 
wound healing have been reported to prolong 
inflammatory responses [61]. Pretreatment of mice with 
HPD may have curtailed the duration of inflammatory 
responses to the required minimum and would have thus 
helped in the early regeneration and repair of irradiated 
wound. HPD has been reported to suppress the activation 
of proinflammatory cytokines IL-1β, IL-8, and TNF-α [62]. 
It is also possible that the presence of HPD treatment 
before irradiation would have blocked the radiation-
induced inhibition of cell cycle regulatory protein mRNAs 
to increase the capacity of fibroblast and endothelial cell 
division, which are essential for repair and regeneration 
of wound. The hesperidin treatment before irradiation 
has been found to increase fibroblast proliferation and 
blood vessel formation [63]. Wounding and irradiation 
has been reported to activate the transcriptional 
activation of NF-κB, COX-II and LOX [13,64,65]. Treatment 
of mice with HPD may have inhibited radiation-induced 
transcriptional activation of NF-κB, COX-II and LOX 
resulting in the early repair and regeneration of wounds. 
This is supported by the observation, where HPD has 
been reported to inhibit of NF-κB and COX-II activation 
[66]. The HPD increases Nrf2 expression that would have 
increased the activation of keratinocyte growth factor and 
accelerated the repair and regeneration of irradiated 
wound [62,67]. Matrix metalloproteinases play a crucial 
role during repair and regeneration of wound, however 
their higher expression 
after irradiation has a negative impact on healing 
processes and delay wound healing [68,69]. The HPD 

reduces the higher expression of matrix 
metalloproteinases leading to enhanced wound healing of 
the irradiated wound [69]. The HPD might have triggered 
the rise in collagen and DNA syntheses that would have 
helped in matrix remodelling and early repair of wound. 
HPD treatment may have also struck a balance between 
regeneration and apoptosis that are essential for wound 
repair which may have accelerated the repair and 
regeneration of wounds. HPD has been reported to 
enhance collagen and DNA syntheses in irradiated 
wounds [63]. HPD has been reported to reduce radiation-
induced lipid peroxidation and increase the antioxidant 
status in the irradiated wound, which would have also 
helped in the early repair of irradiated wound in mice 
receiving HPD [70]. 
 

Conclusions 

     The present study demonstrates that hesperidin 
retards the radiation induced delay in healing of 
irradiated wounds in a dose dependent manner and the 
greatest augmentation in wound healing was observed for 
100 mg/kg. This healing effect of HPD is due to 
scavenging of radiation-induced free radicals, anti-
inflammatory and antioxidant activities and reduced lipid 
peroxidation. The augmentation in healing of irradiated 
wound may be also due to suppression of IL-1β, IL-8, 
TNF-α, NF-κB, COX-II, LOX and matrix metalloproteinase 
activation by HPD after irradiation. The increase Nrf2 
activity by HPD may have also contributed in the 
acceleration of repair and regeneration of irradiated 
wound in the present study. However further detailed 
studies are required to understand the clinical 
implications of these results. 
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