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Abstract 

The present study focuses on the effects of moderate-intensity inhomogeneous static magnetic fields (SMF) up to 0.73 T 

on action potentials in Wistar rats. Thirty three animals were divided into three groups: a sham-exposed control group 

and two exposed groups with exposure to maximum flux densities (Bmax) of 0.24 and 0.73 T SMF. The amplitude of the 

electrically evoked compound nerve action potentials (CNAP) and compound muscle action potentials (CMAP) were 

measured for up to 2 h. In the CNAP, the excitation of Aδ fibers was significantly enhanced by both 0.24 T and 0.73 T SMF 

for 2 h, relative to the sham-exposed control. Furthermore, the CMAP decrement was significantly enhanced by 0.73 T 

SMF for 1 to 2 h, but not by 0.24 T SMF for up to 2 h, compared with the control. These results suggest that SMF (0.24 and 

0.73 T for 2 h) enhances pain perception because the Aδ fibers are responsible for pain transmission. In addition, SMF 

(0.73 T for 1 to 2 h) may modulate neuromuscular transmission. Thus, the magnetic force produced by SMF could affect 

the behavior of some types of ion channels associated with Aδ fibers, probably due to SMF-induced modulation of 

ion/ligand binding and ion transport. 

Keywords: Magnetic Force; Electrical Nerve Stimulation; Compound Nerve Action Potentials; Compound Muscle 

Action Potentials; Ion Channels; Ion/ligand Binding; Ion Transport. 

Introduction 

     Considering the widespread and rapid increase in the 
static magnetic fields (SMF) used in medical diagnosis and 
applications, various studies have investigated the effects 
of acute or chronic exposure to SMF on humans and 
animals over the past 30-40 years. A number of neuro- 
and electrophysiological studies on SMF effects, including 

or focusing on less than 1 T, have been well-reviewed 
elsewhere [1-3]. Several studies have reported on 
significant neurophysiological effects of moderate-
intensity SMF ranging from 1 mT to 1 T with exposure 
duration from 100 sec to 40 days [4-44]. However, only a 
few studies have reported on the effects of moderate-
intensity SMF on action potentials in vivo, probably due to 
SMF-induced modulation of ion/ligand binding and ion 
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transport [4,8,22]. For example, a spatially homogeneous 
SMF of 0.65 T suppressed the temporal decrease of the 
muscle tension induced by electrical stimulation of the 
sartorius muscle in the neuromuscular preparation of the 
bullfrog [22]. Four possible biochemical mechanisms for 
the SMF effect on muscle tension were proposed: (i) 
change of acetylcholine release from presynaptic 
terminals; (ii) sensitivity change of acetylcholine 
receptors at the endplate; (iii) change of Ca2+ dynamics; 
and (iv) change of large molecules and enzymes, e.g. 
calmodulin molecules, myosin light chain kinase, and ATP 
molecules [22]. 
 
     These studies, however, mainly focused on isolated 
skeletal muscles and nerve fibers in vitro, and almost 
none on neuromuscular transmission in vivo. Therefore, 
this study focuses on the in vivo effects of moderate-
intensity SMF up to 0.73 T on the rat sciatic nerve fibers 
of the sartorius muscle.  
 

Materials and Methods 

Animals and Groups 
     Thirty three adult male Wistar rats (body weight 250–
300 g) were used in this study. Wistar rats were 
purchased from Charles River Laboratories Japan. The 
animals were housed individually in the same room, with 
a 12-h light/dark cycle (lights on: 7 a.m.) at a temperature 
of 25±0.5°C, and a relative humidity of 50±5%. Animals 
were fed standard rodent chow and tap water ad libitum. 
All experimental procedures performed on the animals 
were in strict accordance with the Guide for the Care and 
Use of Laboratory Animals (7th ed. 1996, US National 
Academy Press, Washington, DC, USA) and approved by 
the Animal Ethics Committee in Chiba University in Japan. 
The animals were divided into three groups: I) sham-
exposed control group (control group); II) SMF-exposed 
group with inhomogeneous exposure to maximum flux 
densities (Bmax) of 0.24 T (0.24 T-exposed group); and III) 
SMF-exposed group with Bmax of 0.73 T (0.73 T-exposed 
group), which were further subdivided into six subgroups 
for measuring either kind of action potentials (each 
subgroup had 5-6 animals): Ia) control group for 
measuring compound nerve action potentials (CNAP); IIa) 
0.24 T-exposed group for measuring CNAP; IIIa) 0.73 T-
exposed group for measuring CNAP; Ib) control group for 
measuring compound muscle action potentials (CMAP); 
IIb) 0.24 T-exposed group for measuring CMAP; IIIb) 0.73 
T-exposed group for measuring CMAP. The electrical 
stimulation and recording of both action potentials was 
performed for approximately 5 minutes at 1-h and 2-h 

exposure time in the SMF-exposed group under SMF 
exposure and in the sham-exposed group under non-SMF 
exposure (except for the Earth's magnetic field). 
 

Magnetic Field 

     The SMF was generated by two neodymium–iron–
boron (NdFeB) magnet assemblies (TDK, Japan), detailed 
specifications have been described elsewhere [42]. One 
magnet assembly was constructed of a pair of rectangular 
NdFeB magnets (magnet dimension L ×W × D = 15 × 15 × 
2.4 cm; Bmax 0.26 T on the surface of the magnet). The 
upper and lower magnetic plates, with oppositepolarities 
vertically attracting each other through a 5 cm air gap, 
were fixed parallel to both sides of the stainless frame. In 
the other magnet assembly, a pair of stronger NdFeB 
magnetic plates (L ×W × D = 15 × 15 × 6 cm; Bmax 0.75 T) 
was used with the same air gap of 5 cm. The magnet 
assemblies in the sham-exposed control group consisted 
of the same material but were not magnetized.  
 
     The rear part of the body of the anesthetized animal, 
which was placed on an animal bed holder (L ×W × D = 30 
cm × 10 cm × 0.5 mm), was located on the lower magnetic 
plate (North seeking pole) inside either type of a magnet 
assembly (Figure 1). The front part of the body, which 
was placed on a supporting box, was located outside the 
magnet assembly. The direction of long axis of the body 
(their body length of about 30 cm) was oriented 
orthogonal to the attracting force of magnetic plates. The 
spatial distribution of the SMF was measured along the y-
axis at the animal site using a magnetic field meter (model 
4048 with a Hall probe sensor A-4048-002, Bell 
Technologies, USA). The whole body was exposed to 
spatially inhomogeneous SMF (Figure 1a,b). The distance 
between the magnet surface and the body surface was 0.5 
mm due to the depth of the animal bed holder. The Bmax 

applied to the body was 0.24 T (Figure 1a) or 0.73 T 
(Figure 1b).  
 
     The gradient in the whole body was calculated on the 
basis of measured field strengths (B) as: 
 

G = yB  /
                                            

 (1) 

 
The force product (FP) was defined as: 
 

FP = BG                                                      (2) 
 
     In the magnet assembly of Bmax = 0.24 T, the maximum 
values of magnetic gradient (Gmax), and force product 
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(FPmax) were 12.53 T m-1 and 0.97 T2m-1, respectively 
(Figure 1a). In the magnet assembly of Bmax = 0.73 T, the 
Gmax, and FPmax values were 26.73 T m-1 and 7.23T2m-1, 
respectively (Figure 1b). In both magnet assemblies the 
Gmax, and FPmax values were located near the edge of the 
magnet. The anesthesia was maintained during the entire 
experimental period for at least 2 h and the animal was 
restrained in the magnetic assembly. The ambient 
temperature in the magnet was maintained at 25±0.5°C 
with the relative humidity of 50± 5%. 
 
 

 

Figure 1: Schematic view of exposure of a ratto a 
magnet assembly with a vertically oriented and spatial 
distribution of SMF in two types of magnet assemblies 
along the y-axis. The animals were exposed to a 
spatially inhomogeneous SMF of Bmax 0.24 T (a) or 
0.73 T (b) at the mid-pole field along the y-axis. Upper 
row, magnetic flux density (B) values; middle row, 
magnetic gradient (G) values; lower row, force product 
(FP) values; and ▼, respective peak values. 

 
 

Compound Nerve Action Potentials (CNAP) 

     Wistar rats were anesthetized with urethane (1.0 g kg-1, 
i.p.; ethyl carbamate; Wako Pure Chemical, Japan). The 
rats were placed in prone position, a lateral skin incision 
was made on the dorsal side of the right hind limb, and 
then a sciatic nerve and a gastrocnemius nerve were 
exposed. One of a bipolar electrode was placed on the 
sciatic nerve for applying repetitive electrical nerve 
stimulation and the other bipolar electrode was attached 
to the medial gastrocnemius nerve for measuring 
compound nerve action potentials (CNAP). The distance 
between the stimulating and recording electrodes was 
approximately 3 cm. A reference ground electrode was 
attached to the body of each animal. The reference ground 
electrode was connected to the earth terminal of the 
power source to eliminate stray current interference. All 
electrodes were made of pure platinum, which is inert 
and non-ferromagnetic material (molar magnetic 
susceptibility χmol (cgs) = 193 ×10-6cm3mol-1 at 295 K) 
[46] and, therefore, is apparently neither attracted nor 
repelled by a magnet.  
 
     After attaching the electrodes to the nerves, the nerves 
were covered with liquid paraffin, and were sealed with 
Para film (Bemis Flexible Packaging, USA) to prevent 
desiccation. In each animal, the four limbs and the lead 
wires were tightly fixed to an animal bed holder using 
strings in order to avoid motions associated with muscle 
contractions during the repetitive electrical nerve 
stimulation. The anesthesia lasted for at least 2 h during 
the measuring experiment.  
 
     The sciatic nerve was electrically stimulated during 
exposure to a non-homogeneous SMF of Bmax 0.24 T or 
0.73 T. Except for a strong SMF (2-8 T) generated by a 
superconducting magnet, a similar procedure has been 
described elsewhere [47]. Briefly, a measurement 
instrument (Neuropack MEB-2200, Nihon Kohden, Japan) 
was used to stimulate the nerve bundle and to record the 
CNAP. Repetitive electrical nerve stimulation was applied 
with intensities ranging from 1, 3, 5 and 7 mA, with a 
pulse width of 0.1 ms and a pulse repetition rate of 3 Hz. 
The signal-to-noise ratio (SNR) was improved by 
averaging 20 repetitive recordings.  
 
     Data were collected from the medial gastrocnemius 
nerve in the right side of 15 animals for approximately 5 
minutes at 1-h and 2-h exposure time, in which stability 
was sufficient to allow detailed analysis. The animals 
were randomly divided into the above mentioned three 
subgroups: Ia) control group (n = 5); IIa) 0.24 T-exposed 
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group (n = 5); and IIIa) 0.73 T-exposed group (n = 5) for 
up to 2 h. The values of CNAP were measured for these 
three groups. 
 

Compound Muscle Action Potentials (CMAP) 

     The animals used in CMAP recordings were different 
individuals from those used in CNAP recordings. With the 
anesthetized rat in a prone position, the left sciatic nerve 
was exposed through a lateral skin incision on the dorsal 
side of the left mid-thigh. A measurement instrument 
(Neuropack MEB-2200, Nihon Kohden, Japan) was also 
used to stimulate the sciatic nerve and to record the 
compound muscle action potentials (CMAP). For 
stimulation, a bipolar electrode was attached to the sciatic 
nerve. The sciatic nerve was electrically stimulated during 
exposure to a non-homogeneous SMF of Bmax 0.24 T or 
0.73 T, using 10 repetitive pulses of 8 mA, 0.5 ms and 3 
Hz, as a supramaximal stimulus. The CMAP was recorded 
from the left gastrocnemius muscle using a platinum 
concentric needle electrode (NM-030T, Nihon Kohden).  

The distance between the stimulating and recording 
electrodes was approximately 6 cm. The SNR was 
improved by averaging 10 repetitive recordings. All other 
procedures were almost the same as for the experiment of 
CNAP. 
 
     We calculated the values of “the relative average 
amplitude” and “the decrement rate” of CMAP. The values 
of the relative average amplitude were determined by 
signal averaging the successive responses elicited by 
repetitive ten pulses and were calculated relative to the 
corresponding pre-exposure values (pre-exposure 
baseline value = 100%). The CMAP decrement rate (%) 
was simply calculated as follows: 
 

Decrement rate  %) =  1 −
𝑃min

𝑃1
) × 100                         (3) 

 
Where P1 is the first pulse stimulus-induced amplitude 
and Pmin is the minimum amplitude induced by the 
following pulse stimulus (Figure 2). 

 

 

Figure 2: An example of the calculation of CMAP decrement rate (%). P1 is the first pulse stimulus-induced 
amplitude and Pmin is the minimum amplitude induced by the following pulse stimulus. The CMAP 
decrement rate (%) was simply calculated as [1– (Pmin/P1)] × 100. 

 
 
     Data were collected CMAP from the gastrocnemius 
muscle in the left side of 18 animals for approximately 5 
minutes at 1-h and 2-h exposure time, in which stability 
was sufficient to allow detailed analysis. The animals 
were randomly divided into the above mentioned three 
subgroups: Ib) control group (n = 6); IIb) 0.24 T-exposed 
group (n = 6); and IIIb) 0.73 T-exposed group (n = 6) for 

up to 2 h. The values of CMAP were measured for these 
three groups. 
 

Data Processing 

     The results are expressed as mean ± standard error of 
the mean (SEM). Comparisons between groups over time 
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were made using two-way analysis of variance with 
repeated measures, followed by the Wilcoxon rank sum 
test for pairwise comparisons. Significance was set at P< 
0.05. 
 

Results 

     Multiple peaks were observed in the recorded CNAP 
(Figure 3). Nerve fibers were classified into several types 
(Aα, Aβ, Aγ, Aδ, B, and C) according to their conduction 
velocities and functions. We identified three peaks 
corresponding to the Aδ, B, and C fibers  Figure 3). The 
respective conduction velocities of the Aδ, B, and C fibers 
were 13.6, 3.8 and 0.5 ms-1. To investigate the SMF effects 
on pain-related nerve fibers, we focused on two kinds of 
sensory nerve fibers, that is, Aδ and C fibers, and analyzed 
their relative peak amplitude. Myelinated Aδ fibers 
respond to stimuli such as cold and pressure, and as a 
nociceptor, Aδ fibers convey fast pain information [48]. 
Slowly-conducting, unmyelinated C fibers, by contrast, 

carry slow pain [48]. The values of “the relative peak 
amplitude” of Aδ and C fibers were calculated as the 
relative change in the peak amplitude, relative to the 
corresponding peak pre-exposure values (pre-exposure 
baseline value = 100%).  
 
     Significant results of SMF effects on the relative peak 
amplitude of Aδ fibers were obtained in the range of 
moderate-intensity electric stimulation applied (3 and 5 
mA). At 2-h exposure, both Bmax 0.24 T and 0.73 T SMF 
caused significant increase in the relative peak amplitude 
of Aδ fibers at 3 mA stimulation  Figure 4). In addition, at 
2-h exposure, Bmax 0.73 T SMF significantly elevated the 
relative peak amplitude of Aδ fibers at 5 mA stimulation 
(Figure 4). Neither Bmax 0.24 T nor Bmax 0.73 T SMF 
exposure for up to 2 h induced any significant changes in 
the relative peak amplitude of C fibers in response to any 
electrical stimulation used in this study (Table 1).  

 
 

 

Figure 3: Typical multiple peaks in the recorded action potentials of the Aδ, B, and C 
fibers. Electrical stimulation was applied with intensities ranging from 1, 3, 5 and 7 
mA, with a pulse width of 0.1 ms and a pulse repetition rate of 3 Hz. 
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Figure 4: Effects of SMF on relative peak amplitude of Aδ fibers. Time course of relative change 
in the relative peak amplitude at 1-h and 2-h exposure time under stimulus intensities ranging 
from 1, 3, 5 and 7 mA, with a pulse width of 0.1 ms and a pulse repetition rate of 3 Hz in 
exposed Bmax 0.73 T SMF, Bmax 0.24 T SMF, and control groups. Solid blue circles represent the 
exposed Bmax 0.73 T SMF group; solid green triangles represent the exposed Bmax 0.24 T SMF 
group; and open black circles represent the control group (0 T). Values are expressed as mean 
± SEM (n = 5 in each group). Pre-exposure baseline value = 100%. *P< 0.05 compared with the 
respective control group.  

 

Exposure 
Electrical stimulus  

intensity 
Exposure duration 

0 h 1 h 2h 

0 T (Control) 

1 mA 100.0 ± 0.0 104.8 ± 13.8 109.5 ± 13.8 
3mA 100.0 ± 0.0 129.2 ± 18.6 137.5 ± 20.5 
5mA 100.0 ± 0.0 117.0± 11.8 128.3 ± 13.5 
7 mA 100.0 ± 0.0 125.8 ± 3.4 134.9 ± 3.4 

0.24 T 

1 mA 100.0 ± 0.0 110.3 ± 19.5 97.7 ± 17.7 
3mA 100.0 ± 0.0 120.4 ± 10.1 134.7 ± 22.8 
5mA 100.0 ± 0.0 123.1 ± 9.6 120.0 ± 8.9 
7 mA 100.0 ± 0.0 117.1 ± 8.7 112.2 ± 8.8 

0.73 T 

1 mA 100.0 ± 0.0 108.7 ± 16.5 110.9 ± 17.5 
3 mA 100.0 ± 0.0 131.5 ± 12.4 135.2 ± 12.4 
5 mA 100.0 ± 0.0 130.8 ± 8.3 132.3 ± 8.3 
7 mA 100.0 ± 0.0 131.3 ± 2.3 129.9 ± 8.1 

Table 1: Changes in the relative peak amplitude (%) of C fibers in response to SMF exposure 
Values represent mean ± SEM of five animals per group. 
P > 0.05, not significant (ns) in all instances compared with the respective control group (0 T). 
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     The values of the response latency from stimulus to the 
peak amplitude of Aδ fibers  Table 2) and C fibers  Table 
3) were also analyzed. No significant results of SMF 

effects on the latency of Aδ and C fibers were obtained in 
any case (Tables 2 & 3).  

 

Exposure 
Electrical stimulus 

intensity 

Exposure duration 

0 h 1 h 2h 

0 T (Control) 

1 mA 17.9 ± 0.1 17.8 ± 0.1 17.8± 0.2 

3mA 17.8 ± 0.1 17.7 ± 0.1 17.8 ± 0.1 

5 mA 17.8 ± 0.2 17.9 ± 0.2 17.8± 0.2 

7mA 17.7 ± 0.2 17.8 ± 0.1 17.7 ± 0.2 

0.24 T 

1 mA 17.8 ± 0.1 17.8 ± 0.1 17.8 ± 0.1 

3mA 17.8 ± 0.2 17.7 ± 0.2 17.8± 0.1 

5 mA 17.7 ± 0.1 17.8 ± 0.1 17.7 ± 0.1 

7mA 17.8 ± 0.2 17.9 ± 0.2 17.8± 0.1 

0.73 T 

1 mA 17.8 ± 0.1 17.8 ± 0.1 17.9 ± 0.2 

3mA 17.9 ± 0.2 17.8 ± 0.2 17.8± 0.1 

5 mA 17.8 ± 0.1 17.9 ± 0.1 17.7 ± 0.1 

7 mA 17.8 ± 0.1 17.7 ± 0.1 17.8± 0.2 

Table 2: Changes in the latency (ms) of AS fibers in response to SMF exposure. 
Values represent mean ± SEM of five animals per group. 
P > 0.05, not significant (ns) in all instances compared with the respective control group (0 T). 

 
 

     The CMAP decrement was significantly enhanced by 
Bmax 0.73 T SMF during 1- to 2-h exposure period, but not 
by Bmax 0.24 T SMF during the entire exposure period of 2 

h, compared with the unexposed control (Figure 5). The 
relative average amplitude of CMAP was not affected by 
both SMF exposures (Table 4).  

 

Exposure 
Electrical stimulus  

intensity 
Exposure duration 

0 h 1 h 2h 

0 T (Control) 

1 mA 122.2 ± 0.2 122.1 ± 0.2 122.2 ± 0.2 

3mA 122.1 ±0.2 122.2 ± 0.2 122.2± 0.1 

5 mA 122.2 ± 0.2 122.2 ± 0.2 122.3 ± 0.2 

7 mA 122.3 ± 0.1 122.2 ± 0.2 122.2 ± 0.1 

0.24T 

1 mA 122.2 ± 0.2 122.3 ± 0.2 122.2 ± 0.2 

3mA 122.1 ±0.2 122.2 ± 0.1 122.2 ± 0.2 

5 mA 122.2 ± 0.2 122.1 ± 0.2 122.3 ± 0.2 

7 mA 122.1 ±0.2 122.2 ± 0.2 122.2 ± 0.1 

0.73 T 

1 mA 122.3 ± 0.2 122.2 ± 0.2 122.1 ± 0.2 

3mA 122.1 ±0.2 122.1 ±0.2 122.2± 0.2 

5 mA 122.2 ± 0.1 122.2 ± 0.2 122.1 ±0.2 

7 mA 122.3 ± 0.2 122.2 ± 0.2 122.1 ± 0.2 

Table 3: Changes in the latency (ms) of C fibers in response to SMF exposure. 
Values represent mean ± SEM of five animals per group. 
P > 0.05, not significant (ns) in all instances compared with the respective control group (0 T). 
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Exposure duration 

Exposure 0 h 1 h 2h 

0 T (Control) 100.0 ± 0.0 112.7 ± 14.9 108.2 ± 17.7 

0.24 T 100.0 ± 0.0 108.9 ± 15.9 106.9 ± 12.7 

0.73 T 100.0 ± 0.0 115.2 ± 12.3 113.7± 12.1 

Table 4: Changes in the relative amplitude (%) of CMAP in response to SMF exposure. 
Values represent mean ± SEM of six animals per group. 
P > 0.05, not significant (ns) in all instances compared with the respective control group (0 T). 

 

 

 

Figure 5: Effects of SMF on compound muscle action potentials (CMAP). Time course of relative change 
in the CMAP decrement at 1-h and 2-h exposure time under a stimulus intensity of 8 mA with a pulse 
repetition rate of 3 Hz and a pulse width of 0.5 ms in exposed Bmax 0.73 T SMF, Bmax 0.24 T SMF, and 
control groups. Solid blue circles represent the exposed Bmax 0.73 T SMF group; solid green triangles 
represent the exposed Bmax 0.24 T SMF group; and open black circles represent the control group (0 T). 
Values are expressed as mean ± SEM (n = 6 in each group). *P< 0.05 compared with the respective 
control group. 

 

Discussion 

     The major finding of this study is that excitation of Aδ 
fibers was significantly enhanced by both 0.24 T and 0.73 
T SMF for 2 h, relative to the sham-exposed control. These 
results in vivo implies that exposure to moderate-
intensity inhomogeneous SMF enhances pain perception, 
through the reduction of pain threshold, because Aδ fibers 
are responsible for pain transmission. In contrast, our 
previous results in vitro (excised frog sciatic nerve 
preparation) suggested that Bmax 0.70 T SMF could 

increase pain threshold by decreasing nerve conduction 
velocity of C fibers alone, but not of Aδ fibers [42].  
 
     In the current study we used urethane as an anesthetic 
agent because urethane is widely used to investigate 
neurovascular coupling due to its balanced effect on 
neurotransmitters [49], although the effects on 
neurotransmitter-gated ion channels, including nicotinic 
acetylcholine receptors, were reported [50]. Ideally, if 
possible, the experiment should be performed in 
conscious animals without the interference of anesthetics. 



Nanomedicine & Nanotechnology Open Access 
 

 

Okano H, et al. The Effects of Moderate-Intensity Inhomogeneous Static 
Magnetic Fields on Neuromuscular Transmission. Nanomed 
Nanotechnol 2017, 2(3): 000126. 

                         Copyright© Okano H, et al. 

 

9 

Anesthesia by itself can modulate not only pain 
perception but also probably excitation of Aδ fibers. 
However, the finding that SMF increases nerve fibers 
excitability and modulate neuromuscular transmission 
has more important potential implication than other pain 
perception processes. 
 
     Another study in vitro (excised adult guinea pig spinal 
cords) showed that exposure to a homogeneous SMF of 
0.5 T induced a decrease in the amplitude of CNAP 
without a change in the response latency during SMF 
exposure [23]. A maximum effect was evident 1–2 min 
after the SMF was applied, with a return to baseline 
within 1 min after the SMF was removed. The results 
were explained by a conduction block in the small axon 
subpopulation owing to the SMF effect on voltage-
activated Na+ channels. The relative selectivity of the SMF 
was believed to occur because of the relatively greater 
density of Na+ channels present in smaller axons. These 
results in vitro are consistent with our previous results on 
the SMF effect on nerve conduction in vitro [42], but are 
inconsistent with our present results on the SMF effect on 
neuromuscular transmission in vivo.  
 
     It has been reviewed that in vivo nerve conduction 
studies have failed to establish a link between in vitro 
effects and the analgesic responses observed in pain 
studies [51]. It seems likely that the SMF effects on pain 
perception in vitro are often different from those in vivo, 
depending on the physiological conditions of the nerve 
membrane excitation. Although the mechanistic reasons 
for this difference in the threshold have yet to be clarified, 
SMF could affect the behavior of some types of ion 
channels associated with Aδ and C fibers. 
 
     The other significant finding is that the CMAP 
decrement was significantly enhanced by 0.73 T SMF for 1 
to 2 h, compared with the control. From the viewpoint of 
the electrophysiological diagnosis, the enhanced CMAP 
decrement in repetitive electrical nerve stimulation is 
related to dysfunction of neuromuscular transmission 
[52]. This implies that SMF may cause dysfunction of 
neuromuscular transmission. More specifically here, the 
CMAP changes roughly indicate the ratio of “the number 
of acetylcholine (ACh) receptor responded to Ach release 
from presynaptic terminals” to “the amount of ACh 
release” [53]. Therefore, the SMF-enhanced CMAP 
decrement implicates that SMF may increase the ACh 
release from presynaptic terminals and/or decrease the 
sensitivity of ACh receptor because the ACh release from 
nerve terminals is the cause of muscle contraction. As we 

mentioned in the introduction, the effects of a moderate-
intensity homogeneous SMF on muscle tension were 
found using in vitro neuromuscular preparation [22]. In 
considering the biochemical mechanisms, our results 
might be in accordance with the mechanism(s) that 
modulation of muscle tension appears to be a pathway(s) 
through which (i) ACh release from presynaptic terminals 
and/or (ii) sensitivity change of ACh receptors at the 
endplate can influence CMAP. Additional experiments 
with the pharmacological agents (for instance, ACh 
release inhibitors) and muscle tension measurements are 
needed to make it clear. 
 
     Despite the pain-related response induced by 
moderate-intensity heterogeneous SMF 
[16,17,28,30,31,37,39,42,43], however, there has been 
little documented on the evident effects of SMF on 
neuromuscular transmission, except for the present 
study. Our findings indicate that exposure to moderate-
intensity inhomogeneous SMF could transiently affect 
such aspects of the neurophysiological response as 
enhanced excitation of Aδ fibers and enhanced CMAP 
decrement, resulting in increased pain perception. 
Furthermore, SMF (0.73 T for 1 to 2 h) may modulate 
neuromuscular transmission. Thus, SMF could affect the 
behavior of some types of ion channels associated with Aδ 
fibers. 
 
     Several studies have tested whether activation or 
inactivation of excitable tissues and cells by moderate-
intensity SMF [5-45] and their theoretical models for the 
action of SMF on excitable tissues and cells have been 
proposed [14,54-57]. To date, however, there is 
insufficient direct experimental evidence pertaining to 
these theoretical models and the discrepancy of our 
present results with other studies cannot yet be explained 
by theoretical models. Further studies are required to 
better understand the underlying mechanisms of SMF 
effects on neuromuscular transmission and pain 
perception. 
 

Conclusion 

     Both 0.24 T and 0.73 T SMF for 2 h significantly 
enhanced the excitation of Aδ fibers in the CNAP, 
compared with the sham-exposed control. Furthermore, 
0.73 T SMF for 1 to 2 h significantly enhanced the CMAP 
decrement, but 0.24 T SMF for up to 2 h did not change it 
significantly, compared with the control. These results 
suggest that SMF (0.24 and 0.73 T for 2 h) enhances pain 
perception because the Aδ fibers are responsible for pain 
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transmission. In addition, SMF (0.73 T for 1 to 2 h) may 
modulate neuromuscular transmission. Thus, SMF could 
affect the behavior of some types of ion channels 
associated with Aδ fibers, probably due to SMF-induced 
modulation of ion/ligand binding and ion transport. 
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