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Abstract 

Antibacterial effect of silver nanoparticles (SNPs) has resulted in their widespread applications in health, electronics, 

medicine and home products. SNPs also possess unique optic and catalytic properties, making them highly attractive for 

the creation of new advanced functional materials. Once released into the environment, SNPs may change chemically and 

pose toxicity to different faunal species including humans. SNPs may penetrate the gastrointestinal barrier and reach the 

circulatory system resulting in severe health impacts. The present review paper emphasizes the toxicity of SNPs on 

different human cell lines including human adipose-derived stem cells, human hepatoma cells, human mesenchymal stem 

cells, human intestinal cells, human epidermoid larynx carcinoma cell line and human Jurkat T cells through compiling 

the available reports. SNPs were found to display toxicity to different cell lines at different concentrations. SNP exposure 

to humans should be minimized so as to minimize the health hazards.  
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Introduction 

In recent years, there has been a growing interest in 
the biomedical applications of nanoparticles. In particular, 
silver nanoparticles (SNPs) are increasingly being 
investigated as tools for novel cancer therapeutics, 
capitalizing on their unique properties to enhance 
potential therapeutic efficacy. SNPs have been classified 
as the most abundant nanoparticles found in commercial 
products. However, questions as to are we able to contain 
or control the toxicity effects of SNPs, and how much do 
we know about the toxicological profile of SNPs which are 
commonly used in emerging nanotechnology-based 
applications, still remain unanswered [1].  

 

The antibacterial effect of silver nanoparticles has 
resulted in their extensive application in health, 
electronics and medicine. However, SNPs remain a 
controversial area of research with respect to their 
toxicity in biological and ecological systems [2]. SNPs also 
possess unique optic and catalytic features, making them 
highly interesting for the creation of novel and advanced 
functional materials [3]. As a result of the extensive 
number of applications of SNPs, their potential impacts, 
once released into the environment, are of concern. SNPs 
readily transform in the environment, which modifies 
their properties and alters their transport, fate, and 
toxicity. It is essential to consider such transformations 
when assessing the potential environmental impact of 
SNPs [4]. The toxicity of SNPs was reported to be 
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dependent on various factors such as particle size, shape 
and capping agents [5]. Surface charge is one of the most 
important factors that govern the toxicity of SNPs. It is 
increasingly used in a variety of medical and consumer 
products resulting in increased exposure. However, the 
knowledge on the systemic toxicity of nanosilver is 
relatively limited [6]. The major toxicological concern 
associated with nano-moieties is the fact that some 
manufactured nanomaterials are redox active, and some 
particles transport across cell membranes, especially into 
mitochondria [7]. Several experiments have 
demonstrated that SNPs can be toxic to the vital organs of 
humans, especially to lungs [8]. Orally ingested 
nanoparticles may overcome the gastrointestinal barrier, 
reach the circulatory system, be distributed in the 
organism, and cause adverse health effects [9]. Capping 
agents may also affect the properties of SNPs. A study 
demonstrated how the concentration of the capping agent 
plays a major role in determining the dimensions, 
morphology, and stability, as well as toxicity of a silver 
colloidal solution [10]. 

 
SNPs are the most frequently commercialized 

nanomaterial currently [11]. Due to a distinct lack of 
information on hazardous properties of SNPs on humans, 
there is a dire need to conduct experimental studies 
which can reveal the actual health impact of these nano-
moieties. With the same aim, the present review 
emphasizes on the toxic properties of SNPs as reported by 
different studies conducted on human cell lines.  
 

Studies Based on Human Cell Lines 

SNPs have been employed in a number of studies to 
assess their toxic profile. Kawata et al. [12] evaluated in-
vitro toxicity of SNPs at non-cytotoxic doses to HepG2 
human hepatoma cells based on cell viability assay, 
micronucleus test and DNA microarray analysis. Both 
nano-sized Ag as well as ionic Ag+ contributed to toxic 
effect of SNPs by causing cell proliferation at low doses (< 
0.5mg/L). The experiments exhibited cytotoxicity at 
higher doses (> 1.0mg/L) and abnormal cellular 
morphology, displaying cellular shrinkage and acquisition 
of an irregular space. Exposure to SNPs also increased the 
frequency of micronucleus formation causing much 
stronger damage to chromosomes. Similarly, Kim et al. 
[13] studied the oxidative stress-dependent toxicity of 
silver nanoparticles in human hepatoma cells and results 
revealed that cytotoxicity is primarily the result of 
oxidative stress and is independent of toxicity of Ag+ ion. 
In another study, DNA damage, toxicity and functional 
impairment in human mesenchymal stem cells (hMSCs) 

on SNP exposures was evaluated. The study 
demonstrated cyto- and genotoxic potential of SNPs in 
hMSCs at significantly higher concentrations as compared 
to antimicrobial effective levels [11]. Bohmert, et al. [9] 
studied the analytically monitored digestion of SNPs and 
their toxicity in human intestinal cells. SNPs may 
overcome the gastrointestinal juices in their particulate 
form without forming large quantity of aggregates. These 
particles can reach the intestinal epithelial cells after 
ingestion with only a slight reduction in their cytotoxic 
potential. The effect of synthesized SNPs from the leaf of 
Suaeda monoica on Human Epidermoid Larynx Carcinoma 
cell line was evaluated by the MTT colorimetric technique. 
Results showed a dose-dependent toxicity for the cell 
tested and the viability of Hep-2 cells decreased to 50 % 
{IC(50)} at the concentration of 500 nM [14].  

 
A comprehensive toxicity assay was conducted on 

human Jurkat T cells using oxidative stress-related 
endpoint. The effect of Ag ions was also investigated. Cell 
viability tests indicated high sensitivity of Jurkat T cells 
when exposed to SNPs compared to Ag ions; however, 
both SNPs and Ag ions induced similar levels of cellular 
reactive oxygen species during the initial exposure period 
and; after 24 h, they were increased on exposure to SNPs 
compared to Ag ions, which suggest that oxidative stress 
may be an indirect cause of the observed cytotoxicity of 
SNPs. SNPs exposure activates p38 mitogen-activated 
protein kinase through nuclear factor-E2-related factor-2 
and nuclear factor-kappa B signaling pathways, 
subsequently inducing DNA damage, cell cycle arrest and 
apoptosis [15]. 

 
On the contrary, some studies have found a non-

significant effect of SNPs as Samberg et al. [16] evaluated 
the toxicity and cellular uptake of both undifferentiated 
and differentiated human adipose-derived stem cells 
(hASCs) exposed to SNPs and assessed their effect on 
hASC differentiation. Exposure of hASC to either 10- or 
20-nm SNPs resulted in a non-significant cytotoxicity to 
hASC. Each of the hASC, adipogenic and osteogenic cells 
showed cellular uptake of both 10- and 20-nm SNPs, 
without causing significant ultrastructural alterations. 
Moreover, exposure did not influence the differentiation 
of the cells [16]. 
 

Conclusion 

Silver nanoparticles (SNPs) have been found as the 
most abundant nanoparticles used in commercial 
products. The exposure of humans to SNPs may result in 
severe health hazards. Reviewed studies reveal SNPs to 
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cause toxic effects in human cell lines including human 
adipose-derived stem cells, human hepatoma cells, human 
mesenchymal stem cells, human intestinal cells, human 
epidermoid larynx carcinoma cell line and human Jurkat T 
cells. Conclusively, exposure to SNPs should be minimized 
to lower the chances of its deleterious health impacts. 
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