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Abstract

Microencapsulation, 30 year old field is still growing with development of new materials and active ingredient. Encapsulation 
is an imperative technology used to deliver the component to targeted site in an intact manner with no effect from surrounding 
environment. Colloidosome a novel class of microcapsule generated from the concept Pickering emulsion which is used 
for production of microcapsule by fixing the particle assembly at interface. Colloidosomes are hollow spherical capsule 
developed from controlled self-assembly of colloidal particles on emulsion droplets which reduces total interfacial energy 
and stabilize the structure. In this droplet act as templates for self-assembly of colloidal particles which develops stable 
form as per their shapes, surface properties, mass and electrical charge. Different types of emulsions are used to develop 
the various colloidosomes such as aqueous colloidosomes, hairy colloidosomes, nanoparticle colloidosomes, layer by layer 
colloidosomes and non-spherical colloidosomes. Structural characterization exhibited that the colloidosomes are most stable 
structure and intrinsic porosity of colloidosomes can be used for controlled and targeted drug delivery. Study of packing of 
particle and 3D image revealed the presence of hexagonal and pentagonal patch like soccer ball and C60 fullerenes on the 
surface of colloidosomes which gives stability without collapsing the structure. Increase in concentration of small particle 
increases attraction between the colloidosome that causes flocculation. Stability of colloidosomes affected by time required 
for saturation of large particle. Applications of colloidosomes are mainly useful as encapsulating agent and in controlled 
drug delivery. Colloidosomes are also valuable in tumor therapy, antifungal, antimicrobial therapy and in DNA delivery. The 
flexibility in formulation of colloidosomes will be helpful in various applications in future.  
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Introduction

Nanoscience and nanotechnology have captured the 
attention of many researchers in the last few years and 
upcoming years hold a promise to be golden age for this 
technology. Pharmaceutical nanotechnology is the most 
sophisticated and specialized field which has the potential 
to revolutionize pharmaceutical industry in future. Drug 
carrier systems are mainly generated with aim of changing 
the distribution of active compound and to enhance its 
pharmacological efficacy. Colloidal science and technology 
has explored the expanding field of vesicular carrier system 
in biomedical area. Vesicles are used as vehicles in drug 
delivery system and are important in diagnosis, cosmetics, 
immunology, membrane biology, food supplements as 
well as in genetic engineering. Vesicles act for targeting 
and transport of active agents, and play important role in 
modeling biological membranes. Various researches have 
explored the safe and effective colloidal delivery of vesicles 
in parenteral, oral and transmucosal immunization [1].

The present article, reviews a flexible approach towards 
the development of such a hollow elastic capsule. The capsule 
surface consists only of closely packed layer of colloidal 
particles, which are linked together to develop a solid 
shell, the size of which is easily adjusted from nanometer 
to micrometer to handle the permeability. These capsules 
are known as “Colloidosomes” analogous to liposomes. The 
review also explores the encapsulation process, types and 
properties, methods of preparation, evaluation and stability 
studies of colloidosomes.

Nanocolloidal drug delivery system consists particles in 
the range between 1-1000 µm such as liposomes, niosomes 
[2], lipospheres [3], transferosomes [4], dendrimer, carbon 
nanotubes, proteasomes, antigen cochleates, virus like 
particles and virosomes [5]. Vesicular drug delivery system 
provides an easy technique to deliver the drug to the site of 
action which reduces toxicity and side effects of the drug. 
It also improves the bioavailability of poorly soluble drugs 
thus reducing the cost of therapy. This delivery system is also 
used as sustained release and to delay in drug elimination of 
rapidly metabolized drug. It also overcomes to issue of rapid 
degradation, instability, insolubility and is broadly applied in 
the areas of brain targeting; tumor targeting, gene delivery 
and protein delivery [6]. In colloidal systems, nanoparticles 
[7,8] and microspheres have also gained importance [9]. 
Recent advances in nanotechnology have shown excellent 
feasibility for enhancing the efficacy of bioactive compounds 
and neutraceuticals. Advanced technology has exhibited 
great potential for phytochemicals, herbal extracts, as well as 
poorly adsorbed, poorly soluble cosmetics [10]. 

Efficient encapsulation of several active ingredients such 

as drugs, vitamins, proteins, dyes, biomaterials, cosmetics, as 
fillers in catalyst and waste removal has become possible 
due to colloidosomes which is used as advanced technique of 
vesicular system [11,12].

Encapsulation System Overview

Encapsulation  is an imperative technology 
used in developing products such as food, cosmetics and 
pharmaceuticals. It is a widely used tool to deliver the 
component to a target medium in an intact manner with no 
effects of surrounding environment. The most prominent 
example of encapsulation can be found in nature such as, 
egg shells, angiospermic plant seeds and sea shells. There 
are several other microscopic examples of encapsulation 
available in surrounding which include bacterial spores, 
pollen grains, diatoms, radiolarian, coccolithopores, and 
diatoms [13,14]. One of the example of microencapsulation 
is cell where the semipermeable membrane protects 
and allows to pass molecule by selective permeability. 
Microencapsulation is useful to increase the effectiveness 
[15,16] and also for controlled or triggered release. 
Application of microencapsulation also finds its use in food 
industry, textile industry, agriculture, cosmetics [17] and 
adhesives, examples like electronic ink, herbicides, fertilizers, 
dyes, and perfumes for textile and scratch and sniff prints 
[18], taste and odor masking.

The 30 years old field of microencapsulation is still 
growing with development of new materials and active 
ingredients [19]. Applications involve advanced technology 
like phase change material for thermal energy storage [20] 
and encapsulation of enzymes, vitamin, plant and animal 
cell [21]. Normally, an emulsion comprises two immiscible 
liquids, in which one liquid is dispersed as small droplets 
into other liquid but [22] this is not stable emulsion. The 
large area of interface among the two phases must be created 
and maintained. This type of instability drives to reduce the 
interfacial area by coalescence of oil droplets and results 
into complete separation of phases [23,24]. Addition of 
solid particles that get adsorbed at the oil water interface 
to form densely packed layer which reduces coarsening 
[25]. The layer of particles surrounding the drop produces 
electrostatic repulsion and stabilizes the drop against the 
coalescence. This type of solid stabilized emulsions known as 
Pickering Emulsions [26]. Application of Pickering emulsion 
for the production of microcapsule has been explored 
largely by fixing the particle assemblies at interface using 
several techniques that consist of electrostatic binding with 
polyelectrolytes sintering gelation chemical cross linking 
and polymerization [27-32]. In this type, the droplet acts 
as templates for self-assembly of colloidal particles and in 
self-assembly the colloidal particle develops in a stable form 
as per their shapes, surface properties, mass and electrical 
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charge. These types of capsules are known as colloidosomes 
by their analogy with liposomes.

Colloidosomes, a novel class of microcapsule has been 
generated with high promise as a microencapsulation vehicle. 
The shell of collloidosomes made up of partially fused or 
coagulated single colloidal particles at interface of emulsion 
droplets [33-35]. The particle gets self-assembled to the 
surface of droplets to reduce the interfacial energy. Velev, et 
al. [36] developed such types of structures for the first time by 
templating latex particle adsorbed on the surface of octanol 
in water emulsion and by removal of oil after fusing the 
particle monolayers [37]. Yi, et al. [38]. Caruso, et al. [39] and 
Caruso, et al. [40] generated same structures by templating 
water in oil emulsions and templated solid nanoparticles 
on the surface of solid microparticles based on electrostatic 

attraction and assembling multilayer shells of positively or 
negatively charged polyelectrolytes and nanoparticles. The 
final colloidosomes are produced by removal of colloidal 
particles by assembly of polymer latex colloidal particles 
into shell by partial fusion of shell in water in oil emulsion 
drops. Hairy colloidosomes were formulated by Paunov 
VN, et al. [41] the shell of which was made up of microrod 
particles. They fabricated novel colloidosome capsules 
consisting of aqueous gel core and shells of polymeric 
microrods by templating water in oil emulsions, which were 
stabilized by rod like particles continued by aqueous phase 
gelling, dissolution of oil phase in ethanol and the obtained 
colloidosome microcapsule was redispersed in water. Figure 
1 illustrates the formation of Colloidosome from oil in water 
emulsion [12].

Figure 1: Shell formation: a) Emulsion droplets prepared in particle suspension. b) Particles adsorb at the interface of 
emulsion droplet to minimize the total interfacial energy. It forms a layer of particles that encapsulates the droplet. After the 
self-assembly, layers get stabilized to form solid shells. c) Shells are transferred to a solvent miscible with the fluid inside the 
shell. After removing the droplet interface it form porous capsule. Capsule remains intact due to shell stabilization.

NanoColloidosome is a versatile technique which 
provides efficient encapsulation to control the size, mechanical 
strength, compatibility and permeability. It has several 
advantages as compared to liposome and polymersome 
such as mechanical stability of colloidal shell, size flexibility, 
trigger release ability, choice of encapsulated material, high 
potential of controlling the permeability of entrapped species, 
selective and timely release, mechanical strength allows to 
withstand mechanical load, 100 % encapsulation efficiency, 
highly monodispersed colloidosomes can be produced in 
large quantity by microfluidic device [42], compatibility with 
sensitive materials like cells and biomolecules, allow to design 
release mechanisms. In vivo tracking is possible by doping the 
shell with metallic particles detectable in MRI or X-ray and 
makes it easy to develop from wide range of materials like 
organic, inorganic and polymeric materials. However, there 
are some limitations in the development of colloidosomes, 
the main problem being the poor yield of particles. Ineffective 

formation of shell locking in colloidosome may cause 
coalescence and they may get transferred to water. Lastly, 
there is loss of colloidosomes in large quantity on the transfer 
from organic to water media [43].

Colloidosomes are hollow, spherical capsules developed 
from controlled self-assembly of colloidal particles on 
emulsion droplets. These colloidal particles get adsorbed 
on emulsion droplet to minimize the total interfacial energy 
which also act as bridge between particles, lock them 
together and stabilize the structure. So, the colloidosomes are 
classified on the basis of emulsion used for the formulation. 
They are classified as follows:
•	 Water-in-oil emulsion based colloidosomes
•	 Oil-in-water emulsion based colloidosomes
•	 Water-oil-water emulsion based colloidosomes.
The nature of colloids can also classify the colloidosomes. 
Classifications on the basis of nature of colloids are as follows:
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•	 Aqueous or oily gel core colloidosomes
•	 2. Hairy Colloidosomes
•	 Nanoparticle colloidosomes
•	 Layer by layer colloidosomes
•	 Non-spherical colloidosomes

Method of Preparation

Emulsion Based Colloidosome

Water-in-Oil Emulsion Based Colloidosomes: In presence 
of colloidal particles, aqueous phase is emulsified in oil to 
develop water-in-oil emulsion. These colloidal particles 
get adsorbed on the surface of droplets to minimize the 
total interfacial energy. Addition of polycations locks these 
particles together by Vander Walls forces or by sintering 
the particles [44]. The obtained water-in-oil based colloidal 
dispersion is transferred into water by two different ways i.e. 
centrifugation and filtration technique. The centrifugation 
technique is carried out by diluting obtained colloidal 
dispersion with organic solution (ethanol, dodecane) and 
offered to centrifuge to separate them from supernatant. 
The obtained colloidosomes of water core are redispersed in 
water after washing with ethanol and water.

In another technique, colloidal dispersion filtered 
through hydrophobic milipore membranes, then water 
containing small amount of ethanol is poured on the 
membrane to remove the oil interface and to suspend the 
colloidosomes in water. These water-in-oil emulsion based 
colloidosomes (water core colloidosome) are used as 
encapsulating agents for dyes and drugs mainly because of 
their tunable properties and mechanical resistance to their 

shell [33].
Oil-in-Water Emulsion Based Colloidosomes: In this type, 
oil is emulsified in aqueous phase containing particles and 
surfactant to develop o/w type emulsion. Colloidal particles 
are mainly used to stabilize droplet interface. The obtained 
colloidal dispersion is added to organic phase (ethanol), and 
is centrifuged to separate it from supernatant, washed with 
ethanol and finally redispersed in water [45]. 
Water-Oil-Water Emulsion Based Colloidosomes: In 
this type, oil phase consists of pendant drop of aqueous 
suspension of latex particle. Multiple infusion approach 
offers to adsorb the closely packed particle monolayer on 
the drop interface. Densely coated and adsorbed particles on 
the pendant water drop in oil phase are transferred through 
planar oil-water interface which are free of particles to form 
a giant pendant colloidosome. Developed colloidosomes are 
supported by water-oil-water film coated by latex particles 
bridges both surface [46]. 

Preparation On The Basis Of Nature Of Colloids

Aqueous or Oily Gel Core Colloidosomes: In this type 
of colloidosomes, a hot aqueous solution of agarose is 
emulsified in oil in presence of solid particles. Developed 
w/o emulsion is stabilized by solid particles and allowed 
to cool to form the agarose gel. The obtained aqueous gel 
microcapsule is diluted with ethanol and centrifuged to 
separate them from the supernatant. Microcapsules are 
washed with ethanol and water, then redispersed in water 
and finally giant colloidosomes formed. This technique is 
used to develop the colloidosome in different diameter size 
[33]. The basic technique is illustrated in Figure 2 [41].

Figure 2: Preparation of gel core colloidosome.
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Hairy Colloidosomes

In this technique, colloidosome microcapsule prepared 
with shells of polymeric microrods. In presence of rod 
like polymeric particles, a hot aqueous solution of agarose 
emulsified in oil to develop stabilized w/o emulsion. 
This emulsion system is cooled off to set the agarose gel. 
The aqueous gel of microcapsule is diluted with ethanol, 
centrifuged to separate them from the supernatant, then 

washed with ethanol and water and is redispersed into 
water. The gel core of the colloidosome supports the particle 
shell and offers the microcapsules enough stiffness to be 
separated from oil phase by centrifugation technique. Basic 
method is illustrated in Figure 3 and constructed hairy 
colloidosomes microcapsules prepared from SU-8 microrod 
shown in Figure 4 [47].

Figure 3: Schematic presentation for the preparation of colloidosomes prepared from microrods.

Figure 4: Hairy colloidosome microcapsules prepared 
from SU-8 microrod.

Nanoparticle Colloidosomes

Water-oil-water emulsions can also be used to develop 
the nanoparticle colloidosome with selective permeability. 
Nanoparticle colloidosomes developed by using 

monodispersed double emulsion act as templates to supply 
robust and precisely tuned structure and compositions. 
Glass capillary microfluidic devices (Figure 5a) are used to 
develop monodispersed W/O/W double emulsion with shell 
geometry. Hydrophobic silica nanoparticles dispersed in 
oil shell stabilizes the droplets and it forms colloidosomes 
when oil solvent removed. The size of double emulsion 
and developed colloidosome can be tuned separately 
by controlling the flow rate of each fluid. Advantage of 
nanoparticle colloidosomes over the conventional method 
is that, there is no need to transfer the colloidosomes from 
oil to aqueous phase. Also, it is possible to develop the 
composite colloidosomes by adding different materials 
into the oil phase. The thickness of colloidal shell which is 
most critical parameter in colloidosomes can be controlled 
by changing the dimension of double emulsion. The 
nanoparticle colloidosomes shows selective permeability 
to different sizes of molecules, which is main characteristic 
of colloidosomes [47]. Schematic presentation of the 
preparation of nanoparticle colloidosomes from double 
emulsion is shown in Figure 5b. 

https://medwinpublishers.com/NNOA/
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Figure 5: a) Schematic presentation of preparation of double emulsion by microcapillary device. b) Schematic presentation 
for preparation of nanoparticle colloidosomes from double emulsion.

Layer by Layer Colloidosomes

In this type, enzymes are encapsulated by using 
biocrystals as templates to deposit multilayers, then enzymes 
removed to develop hollow polymer capsule. Layers of 
polyelectrolytes are deposited stepwise on crystals by surface 
charge reversal which occurs upon adsorption of each layer. 
Each deposited layer possesses charge opposite to the earlier 
adsorbed layer. Centrifugation, washing or redispersion 

cycles are used to remove the unabsorbed polyelectrolyte 
before the next layer is deposited. Encapsulated enzymes are 
solubilized by exposing to acidic solutions which changes 
polymer capsule morphology. Polymer capsule ruptures 
when exposed to solution of pH >11and releases the enzyme. 
Oxidizing solutions decompose encapsulated enzyme and 
form hollow polymer capsules [49]. Schematic presentation 
of formation of Layer by layer colloidosomes are shown in 
Figure 6 [50].

Figure 6: Schematic presentation of formation Layer by layer colloidosomes from a-d. e) Removal of the core. f) Developed 
hollow Layer by layer capsule.
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Non-Spherical Colloidosome

Water-oil-water emulsions are used to construct the 
multiple compartment non-spherical colloidosomes by 
glass capillary micro fluidics. There are different numbers 
of aqueous drop in single oil drop of double emulsions. 
Hydrophobic SiO2 nanoparticles are suspended in oil 
phase, polyvinyl alcohol and are dissolved in continuous 

phase to develop a stabilized double emulsion. Suspended 
nanoparticles form the shell after the removal of oil. The 
internal w/o interface remain in spherical shape and outer 
o/w interface deforms in oil removal process and develops 
multiple compartment non-spherical colloidosomes. 
Schematic illustration shown in Figure 7 and SEM images of 
nonspherical colloidosomes are shown in Figure 8 [51]. 

Figure 7: Formation of nonspherical colloidosomes from double emulsions (w/o/w) with multiple internal aqueous drops. 
Toluene and 15nm hydrophobic silica nanoparticle present in oil phase.

Figure 8: SEM images of nonspherical colloidosomes with internal voids.
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Structural Caracterization: Stabilization of emulsions with 
the help of solid particles was first reported by Ramsden 
in 1903 [52]. The word Pickering stabilization is derived 
from the name Pickering, in 1907 on account of a paper 
published by him [53]. Although many articles have been 
published related to this field [54-56] no significant interest 
in this field was observed until 1990. Velev, et al. reported 
potential of Pickering stabilization for microencapsulation 
technique and formation of novel technique [57-59]. Weitz 
[60-63] and Bon [64-67] with their team reported the use 
of Pickering emulsions for the synthesis of capsules with 
mechanical property, size control, permeability properties. 
The assembly of colloidal particles at liquid-liquid interfaces 
is influenced by the interfacial free energies γ of the particles 
and two liquid phases [68]. The interfacial tensions to the 
equilibrium position of the particle at the interface through 
the 3-phase contact angle θ, Figure 9 which can be explained 
by the Young’s equation (Equation 1.1) as given below [69].

cos po pw

ow

γ γ
θ

γ
−

=  ……… 1.1

In the given equation of 1.1, γpo, γpw, and γow, these are 
the interfacial tensions of particle/oil, particle/water and oil/
water respectively. When particle is partially wetted by two 
liquid phases or when 0º < θ < 180º, particles get adsorbed 
on the oil/water interface shown in Figure 9. Experimental 
studies reported that the most stable Pickering emulsion can 
be obtained when intermediate θ values i.e. 60º < θ < 120º 
and θ determines the types of emulsions [70,71]. Hydrophilic 
particles where, θ < 90º project aqueous phase and develops 
the oil in water (o/w) emulsion and hydrophobic particles 
where, θ > 90º stabilize water in oil emulsion (w/o). The 
main characteristic of Pickering emulsion is the large size of 
the stabilizing entities which causes strong binding energy of 
particles with the interface shown in Equation 1.2 [72].

Figure 9: Pickering stabilization: a) A solid particle assembled at the water/oil interface. b) A emulsion droplet surrounded 
by solid particle. c) A colloidosome or permeable microcapsule of polystyrene particles.

( )22 1 cosB owE Rπ γ θ= −  ……… 1.2

In above equation, EB represents the desorption energy 
of the particle from liquid interface into the continuous 
phase of the emulsion. It shows that colloidal particles of 
radius R having size between 0.01-10 µm and intermediate 
θ are attached irreversibly to interface which forms 
highly stable emulsion droplets. Applications of Pickering 
emulsions found useful in various industrial process such as, 
cosmetics, food, mineral floatation and crude oil processing 
[73-76]. Pickering emulsion droplets are extensively used as 
scaffolds for the synthesis advanced supracolloidal materials 
like colloidosomes, colloidal nano-composites, porous solids 
and foams [77]. Velev, et al. [36] synthesized structures 
similar to colloidosomes for the first time, but Dinsmore, et 

al. defined colloidosomes as “selectively permeable capsules 
that are composed of colloidal particles.” The self-assembly 
of spherical particles on emulsion droplets resulted in solid 
shells which were porous (Figure 9b & 9c).

In above figure, (Figure 9a), D ark grey circle is solid 
particle and light grey area that surrounds the particle is 
stabilizing group which is soluble in the oil. ‘R’ is the radius 
of the particle, ‘θ’ is the three phase contact angle. ‘Z’ is the 
distance from the center of the particle to the interface.

The intrinsic porosity of colloidosomes can be used 
for controlled release and targeted delivery of drugs. 
Colloidosomes are most stable structures because of high 
energy desorption of particles from soft interfaces and it 
is also possible to dry colloidosomes without collapsing 
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the structure [78-80]. Recently, there is significant interest 
increased in packing of particles and defects raised from 
packing of particle on a curved surface [81,82]. It is possible 
to pack same size spherical particles in hexagonal lattice 
smoothly on flat surface but some surface defect still arises 
[83,84]. According to Euler’s theorem, the total disclination 
charge of any triangulation on a sphere must be 12. The total 
disclination charge means departure of the coordination 
number on a planar surface of 6. A total disclination charge 
of 12 can be obtained in several ways which determine the 
minimum energy configuration of repulsive particles and 
is necessary for crystallography on sphere which is very 
difficult problem. J.J Thomson [85] recognized this problem 
nearly 100 years ago. He tried, unsuccessfully to explain the 
periodic table in rigid electron shell. Similar problem occurs 
in multi-electron bubbles in superfluid helium,88 virus 
morphology [86-98] protein s-layers [89,90] and coding 
theory [91,92]. Both the classic Thomson problem related 
to particle interacting through Coulomb potential and other 
interaction to potentials remain unsolved even after 100 
years [93-95].

Soccer ball and C60 fullerenes [96,97] are the familiar 

examples of this phenomenon, they have 12 pentagonal and 
20 hexagonal patches shown in Figure 10. Soccer ball consist 
of 12 black color pentagonal patches and 20 white color 
hexagonal patches. As the number of particles on the spheres 
increases, isolated charge 1 defects induces too much strain, 
and can be relieved by introducing additional dislocations 
which consists of tightly bound pairs of 5-7 defects which 
still satisfy Euler’s theorem as their net disclination charge 
is zero. Dislocations are the point like topological defects in 
two dimensions which disrupts the translational order of the 
crystalline phase but are less disruptive of orientational order 
[98]. Dislocations play important role in crystallography on 
spherical surface. When the system size i.e D/4 surpasses 
approximately the critical value of 5 there is formation of 
chains of 5-7 dislocations which are called as grain-boundary 
scars. Where, D is the diameter of spherical and R represent 
the radius of the particle. Curvature of colloidal film results 
in formation of grain-boundary scars which is not observed 
in flat colloidal films. Colloidal particle covered emulsion 
droplet used as experimental model for general theories on 
particle configurations with arbitrary repulsive interactions 
on curved surface such as J.J.Thomson problem or Tammes 
problem [99].

Figure 10: C60 molecule and soccer ball structure exhibit pentagonal and hexagonal patch.

Last few studies on colloidosomes are mainly related to 
the large surface coverage of particles which are locally high 
ordered particles. If particles can interact repulsively then 
there is formation of locally crystalline particle packing with 
minimum energy. Non-crystalline packing colloidosomes are 
found in the literature [100,101]. Fortuna, et al. reported 
the assembly of polydispersed particles resulted into non-
crystalline packing. S.Jiang studied the transition from 
low density and disordered packing to crystalline packing 
depending on the contact angle of paticles [102]. In most 
of the studies of colloidosomes, structure of particles 
are characterized by qualitatively by using electron or 
light microscopy. 3D presentation of the same images of 
colloidosomes can be used to quantitatively characterize the 

particle configuration. The parameter which is measured 
is θ, the droplet diameter and structural organizations of 
particles on the droplet surface.
Three Phase Contact Angle, θ: The three phase contact 
angle, θ which is related to Pickering emulsion is difficult to 
measure at liquid interfaces. Advanced technique applied to 
image as well as to study the wettability of spherical particle 
at liquid interfaces. In this technique, one of the two liquid 
consisting particles is gelled to trap the particles and later 
this gel with trapped particle is allowed to capture image 
with SEM or AFM [33,103]. But another method is applied to 
explore the deformation of particles by heating to temperature 
above the glass transition. Sintering is essential to strengthen 
the interactions between the particles on surface of droplet 
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and to achieve stable capsule. It is observed that, during the 
process particle deforms and reduces particle water contact 

area shown in Figure 11. This deformation process is carried 
out by surface tension and θ can be calculated.

Figure 11: Deformation process: Polymer particle get deformed at the droplet surface due to heating above glass transition 
temp. a, b) SEM images of colloidosomes with a side view of particle layer. c) Deformation process and distance R and W 
required for calculation of θ.

In the above mentioned deformation process, it is 
considered that particle position remain at the same place 
before and after the deformation. R and w can be determined 
from SEM images and used to calculate θ by equation 1.3.

sin
2
w
R

θ =  …………1.3

In this case, θ ≈ 130, because of the colloidosomes are 
composed of polystyrene (pS) particles and wide range of 
values for θ reported i.e 90º < θ < 130º [104,105] for these 
type of particles at alkane water interface. 

It is necessary to mention that the observed θ is just 
an indication because possibility of the experimental error 
in determination of w and R from the SEM image. In glass 
transition, time of heating is limited and it does not precisely 
represent the deformation. Extended heating may cause 
spreading of the particle over the droplet surface and helps 
to reduce the oil/water interfacial area but measured θ gives 
useful information related to wettability of particle. 
Droplet Diameter Distribution (D): Droplet diameter 
distribution is used to characterize the emulsion as well as 
Pickering emulsion which is useful to reveal information 
on total available interface between oil and water phase. 
The total available interface helpful to determine the 
maximum number of particles presented at the surface of 
colloidosomes. In general, estimation of average droplet 
diameter can be assumed by all available particles covering 
w/o interface. In this type, attachment of number of particles 
NA to w/o interface depends on the diameter of the droplet 

D, as given in below equation.

2

6
.2 3.

D

A

VD
N R

=  ………. 1.4

In above equation, VD represents the total volume of 
dispersed phase [106] and 2√3.R2 is the area of the particle 
(Ap) which is hexagonally packed, R is the radius of the 
particle. It is considered that all particles are packed in 
hexagonal structure. The droplet diameter can be obtained 
by SEM images and LM (light microscopy).
Structural Arrangement of Particles & 3D Structure: 
Delaunay triangulation (DT) used for characterization highly 
ordered colloidosomes of 5-,6-, and 7- folded particles but 
other technique is also needed for non-crystalline system 
[107]. Laser scanning confocal microscopy (LSCM) is used 
to characterize any particle in 3D structure which scans the 
colloidosomes and positions of particles at different height 
and gives 3D image by combining three different images. 
Scanning electron image and conventional light microscope 
images can also be used to construct the 3D image of 
colloidosomes. It is considered that the colloidosomes 
are spherical in shape and to obtain 3D coordinates it is 
necessary to decide the two dimensional (x,y coordinates) i.e 
2D image which is subtracted from planar SEM image. The 
required height z can be calculated from given equation:

2 24pz D p= − ……. 1.5
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In above equation, D is the diameter of colloidosome and 
p is the planar center-to-center distance of the particle to the 
central axis of the colloidosome (Figure 12) and achieved in 
similar manner like zp. 

Figure 12: Calculation of z of each particle on the droplet 
surface. Z is calculated from radius (D/2) of colloidosome 
and planar distance (p) from the central axis of the 
colloidosome as explained in equation 1.5 and α is the 
inclination angle of particle respected to central axis.

Z is calculated from radius (D/2) of colloidosome and 
planar distance (p) from the central axis of the colloidosome 
as explained in equation 1.5 and α is the inclination angle of 
particle respected to central axis. 

If we consider, xc, yc are the planar coordinates of 
the central axis of the colloidosome and xp, yp are the 
coordinates of particle then p can be calculated from the 
following equation

( ) ( )2 2

p c p cp x x y y= − − −  ……….. 1.6

The accuracy of the particle adjacent to colloidosome 
declines due to error in x,y positions interprets comparatively 
larger error in z. Voronoi tessellation (VT) and DT are used 
to check the accuracy of the particle. Delaunay triangulation 
(DT) method applied to recognize adjacent particles 
which exhibit defects and grain boundary scars. It can also 
determine adjacent angle distribution, fraction of defect 
and interparticle distance. In addition, Voronoi tessellation 
(VT) provides information of adjacent particle with area 
occupied by each particle and total surface covered by 
that particle. Sastry, et al. [108] applied combined DT and 
VT to conclude area, volume and pores present in particle 
assembly but not to colloidosome. Grier, et al. explained 
application of pair correlation function to characterize the 
degree of order in colloidal films [109]. A single image of the 
highly ordered colloidosomes are used to exhibit 3D image 
by Delaunay triangulation (DT) shown in Figure13. Whereas, 
is complementary method to Delaunay triangulation (DT) to 
characterize particle configurations and used to recognize 
coordinate defects shown in Figure 14 [110,111]. 

 

Figure 13: 3D image of Colloidosomes: SEM image of the colloidosome and 3D image by Delaunay triangulation (DT). The 
dot represent pentagonal structure (light gray) and hexagonal (dark grey).
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Figure 14: 3D image of colloidosome by Voronoi tessellation: At the center of the polygons particles are located. Light-gray 
polygons and dark-gray polygons indicate pentagonal and heptagonal coordinated particles.

SEM image of the colloidosome and 3D image by 
Delaunay triangulation (DT). The dot represent pentagonal 
structure (light gray) and hexagonal (dark grey). At the center 
of the polygons particles are located. Light-gray polygons 
and dark-gray polygons indicate pentagonal and heptagonal 
coordinated particles. 
Colloidal Cage: Tunable Particle Packing: Colloidosomes 
are hollow spherical structures which are developed from 
colloidal particle gathering on the edge of liquid drop. The 
usage of uniform spherical particle in the formation of 
colloidosome aids to switch the permeability which forms 
densely packed particle due to interstitial voids. The size of 
the particles is mainly depends upon the interstitial voids 
which also control the permeability and so release kinetics. 
Porosity and permeability can be tuned by controlling the 
particle density on colloidal surface. Crystalline particle 
packing achieved at high densities in which particle size 
determine the pore size and in case of low densities large 
pore size with disorder packing achieved. Particle density 
which control pore size and interaction between particles 
are the major factor in the formation of colloidosomes. In 
resemblance with term colloidal armor used for densely 
packed colloidosome, new type of class is termed as 
‘Colloidal cages’. Colloidal particles of repulsive interparticle 
potential used in most studies of colloidosome. Repulsive 
particle charge at high and low particle densities exhibit high 
crystalline particle pattern [112]. The application of such 
repulsive particle which are packed on droplet surface used 
as investigational model to study the old Johnson problem 
related to spherical surface whose structural arrangement 
exhibit point like charges [113]. In addition this experimental 
study exposed new problem like grain boundary scars which 

is only related to spherical surface [114]. These study started 
new arenas of investigation of organization of matter consist 
of effect of curvature and topology i.e. studies of shapes and 
spaces [115]. The colloidal particle interactions at interface 
are innovative area of research and involvement of particle 
potential can lead to new class of assemblies.

Colloids with attractive interactions are regularly 
applied for the study of colloidal gels and glasses [116] 
but not for colloidosomes. Volume fraction of the particle 
and inter-particle potential are the major parameter that 
determine the formation and structure the formation of 
colloidal gel and glasses. These parameters can be controlled 
in the development of colloidosome.
Factors Affecting Colloidosomes: There are various factors 
that affect the formation of stable colloidosomes. A system 
comprises mixture of small and large spherical colloidal 
particle with opposite electrical charges. Electrostatic 
attraction attracts the small particle towards large particle. 
Insufficient concentration of small particle fails to saturate 
surface of the large particle causes formation of bridging 
flocculation among the positive and negative large particle. 
Increases in concentration of small particle saturate the large 
particle and forms the colloidosomes. Further increase in the 
concentration of small particle may increases the attraction 
between the colloidosome that causes flocculation. Here we 
will discuss the major factors that affect the formation of 
stable colloidosomes.
Critical Saturation Concentration: Volume fraction of 
small particles essential to saturate the surface of specified 
large particle concentration can be calculated by geometric 
consideration. If it is considered that total small spherical 
particles are monodisperse and incompressible then the 
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required number of small particles to saturate the surface of 
single large particle of hexagonal packing can be calculated 
by equation 1.7 [117]. 

2

.
2 11

3S Satn
R

π  = + 
 

…………… 1.7

In above equation, R (= dS/dL) which is the ratio of small 
particles to the large particle.

If total numbers of large particles are also monodisperse 
then the attraction between small and large particles becomes 
stronger and binds to the surface of large particles. So 
following equation (Eq.1.8) is used to achieve the minimum 
volume fraction that required saturating the surface of large 
particles.

( )2
.

2 1
3S Sat L

S Sat

R Rπφ φ= +

∅ =∅
 ………………… 1.8

In this, Ø’L represent volume fraction of the large particle.
Critical Depletion Concentration: After saturation of 
large particle surface by small particle, the remaining small 
particle in continuous phase builds depletion attraction 
between large particles. Strong depletion attraction than 
repulsion attraction may cause flocculation. Equation 1.9 
expresses the strength of depletion interaction among the 
two large particles in continuous phase including free small 
particles [118].

( ) 31 2 1
2

Dep
S s

B

W
R

φ φ  = + + Κ Τ  
 ……………. 1.9

In above equation, WDep represent depletion attraction 
strength when two large particle surfaces come in contact 
with each other. Depletion attraction strength increases with 
increase in concentration of small particle and decrease in R.

Critical Adsorption Concentration

The stability of colloidosomes also influenced by the 
time required for saturation (TSat) of large particle surface 
and time required for collision (Tcol) of small particles with 
large particle. If the large particle surface are not saturated 
with small particle (Tcol < Tsat), then the large particle 
will combined with small particles and act as bridge. If it is 
considered that the mechanism of large particle collision is 
Brownian motion, then the average time between collisions 
can be calculated from equation 2.0 [119].

3

8
CL

Col
B L

ndπτ =
Κ Τ∅

 ……............... 2.0

Where, ηC represents viscosity of continuous phase.

Effect of Cosolvents: To improve the colloidal particles 
packing at the interface of water/oil, some cosolvents like 
ethanol are used in colloidal suspension. Colloidal particle 
aggregation and coalescence are induced by use of cosolvents 
like ethanol. Laib, et al. [120] studied and determined the 
critical concentration of ethanol observed to be about 25 wt 
% for 11.25 wt % colloidal suspension. The colloidal particle 
/ ethanol (3/1 v/v) suspension air dried and analyzed by SEM 
to study the effect of ethanol on stability. The SEM images 
revealed aggregates of fused particle which indicates latex 
particle are fusing due to plasticization by use of ethanol as 
cosolvents.
Effect of Surfactant: Aqueous suspension of different 
colloidal particle concentration is blended with oil and 
aqueous volume fraction of 1/50 which result in formation of 
unstable emulsion. This indicates that colloidal particles are 
not a suitable emulsifier for water in oil droplets. Therefore 
nonionic surfactant having hydrophobic tail and polar head 
are added to stabilize water-oil droplets. For the negatively 
charged colloidal particle cationic surfactant are employed 
[125]. 
Applications of Colloidosomes: Colloidosomes are mainly 
used as encapsulation and controlled release in drug delivery, 
vitamins, and protein. These are also applied for fragrances 
and flavors pharmaceutical and cosmetic industries and also 
useful in food molecule generated by sensitive biomaterial 
like living cells. Colloidosomes can be used for different 
particle size which is further used in controlled release drug 
delivery. Various interesting characteristics like mechanical 
deformation and rapture are very interesting and used in 
encapsulation technique. A new technique of formulation 
of monodisperse stimuli-responsive colloidosomes which 
consist of stimuli responsive as building block, aqueous 
droplets as templates and microfluidic devices are used 
to control the assembly revealed nearly 80% reduction 
in volume and can be used for targeted-pulsed release 
[121]. Colloidosomes can be further used in therapeutic 
and pharmaceutical applications like in tumor therapy, in 
antimicrobial, antifungal, antiviral therapy, in DNA delivery, 
in enzyme immobilization, for altered pharmacokinetics and 
biodistribution [122].

Conclusion

NanoColloidosome, a novel class of microcapsules 
developed with high promises as microencapsulation 
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vehicle. These are the hollow spherical capsule developed 
from controlled self-assembly of colloidal particles on w/o, 
o/w, o/w/o, w/o/w emulsion droplets. It is a versatile 
technique which provides efficient encapsulation to control 
the size, mechanical strength, compatibility and permeability. 
Different types of emulsion, water in oil emulsion, oil in 
water emulsion and water oil water emulsion are used 
to develop different nanocolloidosome such as aqueous, 
hairy, nanoparticle, layer by layer and non-spherical 
colloidosomes [123]. Structural characterization revealed 
that the colloidosomes which are composed of colloidal 
particles are most stable structures due to high energy 
desorption of particles from soft interfaces. Study of packing 
of particles on curved surface and 3D structure exhibited 
that the colloidosome consist of hexagonal and pentagonal 
patches which are similar to structure of soccer ball and 
C60 fullerenes. Factors which mainly affect colloidosome 
include critical saturation concentration, critical depletion 
concentration, critical adsorption concentration, effect of 
cosolvent and surfactant. Increase in concentration of small 
spherical particle than the large spherical particle causes 
flocculation. The stability of colloidosome is also affected by 
time required for saturation of large particle surface time 
required for collision of small particle with large particle. The 
application of colloidosomes is mainly useful in controlled 
release, as encapsulation agent, in tumor therapy, in nDNA 
and mtdDNA delivery and altered pharmacokinetics [124]. 
The flexibility of nanocolloidosomes vaccines will explore 
the large range of potential applications in future.
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