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Abstract

The structure, morphology and optical properties of β-Ga2O3 thin films grown on GaN at various substrate temperature by 
ozone molecular beam epitaxy (MBE) are investigated in this work. (-201)-oriented β-Ga2O3 thin films are formed on c-plane 
GaN template substrate. When the substrate temperature increases, the crystal quality of β-Ga2O3 thin film improves, and a 
high-crystalline-quality β-Ga2O3 thin film is obtained at the substrate temperature of 700 °C. The Φ scans of X-ray diffraction is 
utilized to characterize the β-Ga2O3 thin film, from the result we find that the β-Ga2O3 thin film has a six-fold domain structure, 
attributed to the epitaxial relationships (β-Ga2O3 [010] // GaN [11-20] and β-Ga2O3 [102] // GaN [1-100]). Base on the 
morphology, it can be seen that the β-Ga2O3 thin film follows the island-growth model, and the size of the island increases as 
the substrate temperature increases. Furthermore, it is found that the defect related luminescence decreases with the increase 
of substrate temperature by analyzing the CL spectra, implying the improvement of crystal quality. The presented optimized 
β-Ga2O3 thin film grown on GaN template substrate should effectively promote the development of high reliable performance 
self-powered ultraviolet (UV) photodetector based on the Ga2O3/GaN heterojunction. 
    
Keywords: β-Ga2O3; MBE; GaN Template Substrate; Temperature Influence

Abbreviations: UV: Ultraviolet; SBDs: Schottky 
Barrier Diodes; MESFETs: Metal-Semiconductor Field-
Effect-Transistors; MOSFETs: Metal-Oxide-Semiconductor 
Field-Effect-Transistors; PLD: Pulse Laser Deposition; 
MBE: Molecular Beam Epitaxy; MOCVD: Metal Organic 
Chemical Vapor Deposition; XRD: X-Ray Diffraction; FIB: 
Focused Ion Beam; AFM: Atomic Force Microscopy; CL: 
Cathodoluminescence; FWH<: full width at half-maximum; 

RMS: Root-Mean-Square; SEM: Scanning Electron Microscope; 
GL: Green Luminescence; BL: Blue Luminescence; DAP: 
Donor-Acceptor Pair.

Introduction

Driven by its potential application on high power 
electronics and solar-blind ultraviolet (UV) photodetectors 
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(PDs), gallium oxide in its most thermodynamically stable 
monoclinic structure, β-Ga2O3, gradually enters people’s 
field of vision. Compared to GaN and SiC, β-Ga2O3 has a wide 
band gap (4.3-4.9 eV), high breakdown electric field (8 MV/
cm) and excellent Baliga’s figure (3214) [1-5]. Therefore, 
β-Ga2O3 is attracting interest for solar-blind self-powered 
UV PDs [6-11], Schottky barrier diodes (SBDs) [12], metal-
semiconductor field-effect-transistors (MESFETs) [2] 
and metal-oxide-semiconductor field-effect-transistors 
(MOSFETs) [13-15]. 

The possibility of depositing β-Ga2O3 films on native 
substrates grown from the melt can allow synthesis of 
high-quality films and large-scale production, nonetheless, 
the high price hinders its possible application. Hence, 
heteroepitaxial β-Ga2O3 films have been obtained on several 
substrates, such as α-Al2O3 (0001) [16,17], MgO (100) [18], 
GaN (0001) [19,20], STO (100) [21] and KTaO3 (100) [22]. 
At the same time, the corresponding photodetectors have 
been prepared and achieved excellent performance [23]. 
Among them, Guo, et al. [9,10] prepared a heterojunction by 
depositing n-type β-Ga2O3 thin film on p-type GaN by pulse 
laser deposition (PLD) to realize a super-high-performance 
self-powered UV photodetector, which helped solve the 
energy issues. However, the β-Ga2O3 thin film grown on GaN 
by molecular beam epitaxy (MBE) have been investigated to 
date seldom.

Recently, Nakagomi, et al. [20] reported that the 
orientation of β-Ga2O3 thin film formed on GaN template 
substrate was found to be (-201) β-Ga2O3 || (0001) GaN || 
(0001) sapphire and (010) β-Ga2O3 || {11-20} GaN, resulting 
in six-fold domain structure of the β-Ga2O3 layer. The β-Ga2O3 
film grown on GaN substrate by metal organic chemical vapor 
deposition (MOCVD) is amorphous and transformed into 
(100) crystalline phase by annealing in oxygen atmosphere 
[24]. Li, et al. [19] reported the growth of vertical β-Ga2O3 
nanowire arrays on GaN layers by MOCVD. The effect of the 
growth temperatures on the β-Ga2O3 thin film formed on 
GaN substrate remained unexplored, which is one of the 
crucial parameters for achieving high crystalline quality. In 
this work, the influence of substrate temperatures on the 
film quality is studied by using the ozone MBE. In addition, 
the epitaxial relationships, morphology and the optical 
properties are analyzed.

Experiments

The β-Ga2O3 thin films on (0001) Ga-plane GaN template 

(4 μm on (0001) sapphire substrate) were deposited by a 
commercial MBE (Octoplus-O 400, Komponenten) with liquid 
Ga (99.9999%) and ozone as the Ga source and O source. The 
GaN template substrate was cleaned by ultrasonic agitation 
in acetone, isopropyl alcohol and deionized water for 15min 
each, followed by drying with nitrogen gas blowing. During 
the growth, the ozone pressure of growth chamber was 
maintained at 5×10-6mbar, and the Ga flux was 0.14Å/s which 
was detected by a quartz monitor crystal. The substrates 
were heated to growth temperature (500℃ ~ 700℃), and 
then growth for 3h.

X-ray diffraction (XRD; D8 Advanced, Bruker) was 
carried out to check out the crystalline orientations and 
crystal quality. The film thickness was determined by cross-
section observation with a focused ion beam (FIB; Scios, 
FEI), meanwhile, the surface morphology of the film was 
obtained from the plane view. The surface roughness of the 
film was analyzed by atomic force microscopy (AFM; Asylum 
Research MFP-3D, Oxford). The optical properties of β-Ga2O3 
films was characterized by scanning cathodoluminescence 
(CL; Delmic Sparc, FEI).

Results and Discussion

The XRD θ-2θ scans of β-Ga2O3 thin films prepared 
with different substrate temperatures are shown in Figure 
1(a). After the deposition of β-Ga2O3 thin films with the 
temperature changed from 500 to 700 °C, three diffraction 
peaks appear and locate at 18.96°, 38.36° and 58.09°, 
respectively, which correspond to the (-201), (-402) and 
(-603) lattice planes of monoclinic β-Ga2O3 (PDF# 43-1012). 
This indicates that the (-201) planes in the β-Ga2O3 thin film 
are parallel to the (0001) GaN surface. In addition, when 
the substrate temperature is 500 °C, the unwanted plane of 
(-801) is shown in the XRD θ-2θ scan, demonstrating the 
polycrystalline nature of this film. As the increase of substrate 
temperature, the (-801) plane disappears, indicating that 
when the substrate temperature above 550 °C, the β-Ga2O3 
thin film is grown with the single orientation along (-201) 
lattice plane on the GaN template substrate. Figure 1(b) shows 
the XRD rocking curves of the (-201) plane of the β-Ga2O3 
thin films prepared at different growth temperatures. And 
the full width at half-maximum (FWHM) values of rocking 
curves are plotted as a function of the substrate temperature 
in Figure 1(c). Apparently, the FWHM value monotonically 
decreases with increasing growth temperature and down to 
1.67° at 700 °C, implying excellent crystal quality and unique 
(-201) out-plane orientation of the thin film.
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Figure 1: (a) θ-2θ XRD patterns of β-Ga2O3 thin films deposited on GaN template at various substrate temperatures. (b) XRD 
rocking curves of the (-201) plane of the β-Ga2O3 films and (c) the dependence of rocking curves FWHM values on the substrate 
temperature.

 Figure 2(a) shows the XRD Φ-scan results for the 
β-Ga2O3 {-401} diffraction of the film grown at 700 ℃. It can 
be seen that there are 6 diffraction peaks, derived from the 
β-Ga2O3 {-401} diffraction with the rotation angle offset 30°.
Furthermore the 6 peaks appear every 60° are observed from 
the six peaks which associated with the {11-22} diffractions 
of GaN. This result indicates that the β-Ga2O3 thin film has a 
six-fold domain structure and an epitaxial relationship with 
the GaN. The schematic diagram of epitaxial relationship is 

presented in Figure 2(b). Base on it one can get that epitaxial 
relationships between (-201) plane of β-Ga2O3 (orange) and 
(0001) plane of GaN (blue) are β-Ga2O3 [010] // GaN [11-20] 
and β-Ga2O3 [102] // GaN [1-100]. The appearance of six-fold 
domain structure is due to the three-fold rotation symmetry 
corresponds to the epitaxial relationship and the originally 
two-fold β-Ga2O3 epitaxial growth in the three different 
directions at same rates [20].

Figure 2: (a) XRD Φ-scan patterns for (top) {11-26} planes of Al2O3 substrate, (middle) {11-22} planes of GaN template and 
(bottom) {-401} planes of β-Ga2O3 film grown at 700℃. (b) Schematic diagram of epitaxial relationship between β-Ga2O3 
(-201) plane (orange) and GaN (0001) plane (blue).

Figure 3 shows the cross-sectional scanning electron 
microscope (SEM) images of the β-Ga2O3 films prepared with 

different substrate temperatures and fabricated by FIB. The 
carbon layer and platinum layer are covered on the surface 
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to are used to protect the surface before FIB. It can be seen 
that the thickness of film is stable around 144 nm. However, 
the film thickness decreases to 112 nm with the substrate 
temperature set at 700 ℃. This may be due to the enhanced of 

the desorption or evaporation rate of volatile Ga2O suboxide 
from the substrate when the temperature exceeds 700 ℃ 
[16,25].

Figure 3: The cross-sectional SEM images of the β-Ga2O3 films deposited at different substrate temperatures. And the thickness 
of β-Ga2O3 films as a function of the substrate temperature.

The SEM plane-view images of β-Ga2O3 thin films grown 
at various temperatures are shown in Figure 4. It can be 
clearly observed that the β-Ga2O3 thin film grown on GaN 
template substrate follows the island-growth model, and 
the island size of β-Ga2O3 thin film increases as the substrate 
temperature increases. We believe that the island size 
difference is ascribed to the growth mechanism with different 
substrate temperature. When the substrate temperature is 
fixed at 500 ℃, the adatoms do not have enough mobility, 
which limits the atomic migration distance and determine 
the size of the island. Thus, the polycrystalline thin film forms, 
which is consisted with the XRD results as shown in Figure 
1(a). It is notable that the surface prefers a low free energy, 
the appeared morphology should be spherical shaped island, 
if the substrate structure is not similar to that of the epitaxial 

film. Hence, considering the influence of the substrate lattice 
structure, island structure appears as has been observed in 
the SEM images. Upon increasing the substrate temperature, 
the increased atomic mobility causes the radius of island to 
become larger, and nearby island begins to join together as 
shown in the SEM images.

Figure 5 displays the AFM morphologies and roughness 
of β-Ga2O3 thin films. The change of morphology is consistent 
with the SEM images with the substrate temperature increase. 
Corresponding to the changes of the surface morphology, the 
root-mean-square (RMS) roughness of the films increases 
when the substrate temperature does not exceed 650 ℃. 
The maximum roughness of the films is 6.15 nm, indicating 
smooth surface.

Figure 4: SEM plane-view images of the β-Ga2O3 films deposited at various temperatures.
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Figure 5: AFM images of the surface morphology for β-Ga2O3 films deposited at 500, 550, 600, 650 and 700 ℃. And the RMS 
values of surface roughness of β-Ga2O3 films as a function of substrate temperature.

 
The room-temperature CL results from the β-Ga2O3 

thin films are found to be strongly dependent on the 
substrate temperatures as shown in Figure 6. Three major 
light emission features are obvious from each spectrum 
and the energy correspond to 2.4 eV, 2.8-3.0 eV and 3.2-
3.6 eV, named as green luminescence (GL) band, blue 
luminescence (BL) band and UV band, respectively. The 
UV band is generally assigned to recombination of free 
electrons and self-trapped holes [26-28]. And the BL band 
may result from defect related luminescence, attributed to 
donor-acceptor pair (DAP) recombination. Possible donors 
are intrinsic point defects such as oxygen vacancies (Vo) 
and interstitial Ga (Gai), and possible acceptors are Ga 
vacancies (VGa), Vo-VGa complexes [26-28]. Thus, the change 
of CL spectra is considered to be caused by the variation 
of crystal quality of the β-Ga2O3 thin films. As the substrate 
temperature increases, the luminescence of BL band and GL 

band gradually decreases, while the UV band luminescence 
increases, illustrating the improvement of crystal quality. In 
order to further quantitatively compare the luminescence 
ratio, each spectrum is fitted by four peaks, as shown in Figure 
7(a)-(e). Note that the UV is fitted by the two peaks because 
the photogenerated holes can self-trap onto two different O 
sites [29,30]. Figure 7f shows the summation area of BL an 
GL peaks with respect to the area of the UV peak as a function 
of the substrate temperature. The relative intensity ratio of 
BL and GL to UV decreases with the increasing of substrate 
temperature, and the ratio reaches the lowest value when 
the substrate temperature is 700℃. This result implies that 
among these substrate temperatures, the β-Ga2O3 thin film 
has the best crystal quality at the substrate temperature of 
700℃, which is consistent with the XRD rocking curves as 
shown in Figure 1b.

Figure 6: CL spectra of β-Ga2O3 films grown at different substrate temperatures.
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Figure 7: (a)-(e) CL spectra with curve-fitting results of β-Ga2O3 thin films grown at different substrate temperatures. (f) The 
dependence of the ratio (the summation area of BL and GL peaks to the area of UV peaks) on the substrate temperature.

Conclusion

In conclusion, β-Ga2O3 thin films are grown on c-plane 
GaN template substrate by ozone MBE. Phase-pure 
(-201)-oriented β-Ga2O3 thin film can be formed with the 
substrate temperature exceeded 550 ℃, and the crystal 
quality improves with increasing substrate temperature. The 
epitaxial relationships are confirmed as β-Ga2O3 [010] // GaN 
[11-20] and β-Ga2O3 [102] // GaN [1-100], and result six-fold 
domain structure in β-Ga2O3 thin film. Because the difference 
in crystal structure between the film and the substrate, the 
β-Ga2O3 thin film follows the island-growth model, and the 
size of the island increases as the substrate temperature 
increases. In addition, CL spectra variations are observed that 
the defect related luminescence decreases with the increase 
of substrate temperature, claiming the improvement of 
crystal quality which are consistent with the results of XRD 
rocking curves. The presented optimized β-Ga2O3 thin film 
grown on GaN template substrate should effectively promote 
development of reliable high performance self-powered UV 
photodetector based on the Ga2O3/GaN heterojunction.
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