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Abstract

Use of antisense oligonucleotides of the type 3′-(N)x-AAAUUUG-(N)x-5′ against slippery sequence and polynucleotides against 
pseudoknots forming sequences of SARS-CoV-2 RNA would block the first translation of ORF1a and ORF1b and hence dwindle 
the virus replication. It is easy to synthesize and deliver the antisense oligonucleotides to the target by directly injecting the 
nano formulation into the blood.
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Abbreviations: ACE2: Angiotensin-Converting Enzyme 
II; CP: Convalescent Plasma; RTC: Replication-Transcription 
Complex.

Introduction

COVID-19 public-health emergency is caused by the 
outbreak of Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2). While it is important to investing time to 
search the origins of the pandemic it is the prime need of the 
moment to find out remedy against the outbreak and it is the 
molecular and biochemical mechanisms of multiplication of 
the virus would help us better than any other ways [1-3].

Current Therapeutic Approaches

Angiotensin-converting enzyme II (ACE2) expression is 
enhanced by SARS-CoV-2 infection [4]. Repression of ACE2 
gene by EZH2-mediated H3K27me3 modifications of ACE2 
promoter could be a targeted for prevention and adjuvant 
therapy of COVID-19. ACE inhibitors or angiotensin receptor 
blockers would be helpful for patients to fight COVD-19 [4,5]. 
Non-specific medicines, including antimalarial and broad 
spectrum antibiotics are being used in many clinics. That the 

convalescent plasma (CP) would benefit COVID-19 patients 
along with antivirals is emerging. However, without control 
subject it is not clear yet although within three days of CP 
therapy patients exhibited improved clinical symptoms CP 
was given within two weeks of symptom onset [6-8].

Mechanism of Synthesis of Virus Subparticles

Prevailing knowledge based on studies with viral 
replication processes is; after the entry into the host cell, 
translation of ORF 1a and 1b into polyproteins Pp1a (4382 
aas) and Pp1ab (7073 aas) is the primary function of the 
guest genome. Both the polyproteins then cleaved into 
fifteen non-structural proteins (nsps), which assemble and 
form the replication-transcription complex (RTC). ORF1b 
is translated by ribosome shifting one nucleotide in the 
−1 direction, from the ORF1a reading frame into ORF1b 
reading frame (reviewed in Tan, et al. [9]. This mechanism 
of repositioning is facilitated by two RNA elements; (i) a 
5′-UUUAAAC-3′ heptanucleotide slippery sequence [10], 
and (ii) RNA pseudoknot structure (Figure 1) [11]. After 
the formation of RTC the full-length positive strand of 
genomic RNA transcribes to form a full-length negative-
strand template for the synthesis of new genomic RNAs and 
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overlapping subgenomic negative-strand templates. These 
subgenomic mRNAs are then transcribed and translated 
to produce the structural and accessory proteins. Several 
heterologous nuclear ribonucleoproteins (hnRNA) family 
members (hnRNPA1, PTB, SYN-CRYP) have been found to be 
essential for efficient RNA replication [9,11,12].

 Formation of the cap structure of eukaryotic host and 
virus mRNAs basically requires three successive enzymatic 
reactions [13]. Removal of the the γ-phosphate group from 
the 5′-triphosphate end (pppN) of the newly transcribed 
mRNA chain to generate the diphosphate 5′-ppN by RNA 
5′-triphosphatase (RTP) is initial reaction. Then, RNA-
guanylyltransferase transfers a GMP to the 5′-diphosphate 
end to produce the cap core structure (GpppN). Finally, 
guanine-N7 methyltransferase (GNMT) methylates the 
attached GMP (capping) at the N7 position to produce a cap-
0 structure (me7GpppN). The 2′-O of ribose of the first and 
second nucleotides of the mRNA in higher eukaryotes and 
their viruses are additionally methylated. The responsible 
enzyme is ribose 2′-O-MT to form cap-1 and cap-2 structures, 
respectively Furuichi Y, et al. [14], Ferron F, at al [15]; 
(Figure 1). Ribose 2′-O-methylation of viral RNA cap provides 
a mechanism for viruses to escape host immune recognition 
[16-18].

Cap-0 reaction is mediated by the C-terminal domain 
of CoV nsp14 using S-Adenosylmethionine (SAM) as the 
methyl group donor (Figure 1) [19]. Conversion of cap-0 to 
cap-1 structures involves nsp16 that acts as a 2′-O-MT and 
forms a complex with nsp10 that appears to be required for 
efficient binding to SAM and the RNA substrate. Interestingly, 
SARS-CoV nsp10 plays an essential role in the specific 
binding of nsp16 to m7GpppA-capped RNA (first nucleotide 
is adenine). The crystal structure of the heterodimer of 

nsp16/nsp10 with bound methyl donor SAM showed that 
nsp10 may stabilize the SAM-binding pocket and extend the 
RNA-binding groove of nsp16 [20,21]. Thus, blocking the 
translation of the virus SARS-CoV-2 mRNA definitely serves 
the purpose. Use of non-specific drugs would complicate the 
disease keeping the virus in dormant stage with a chance 
to relapse by re-activation of the pathogen and outbreak of 
the disease. Efficacy of Chloroquine (CQ) and a less toxic 
derivative of CQ, Hydroxychloroquine (HCQ) against malaria 
provoked some research groups around the globe and in 
many clinics, it has been in use against COVID-19.

Recommendation for Target Specific Convenient 
Therapy

In view of this, and to obtain toxicity free therapy of 
COVID-19 patients my recommendation is to conjointly 
use: (i) A oligonucleotide against the 5′-UUUAAAC-3′ 
heptanucleotide slippery sequence, and
(ii) dismantling the pseudoknot preventing the pairing of 
matching sequences/RNA dimerization [22]. Oligonucleotide 
of the antisense-type 3′-(N)x-AAAUUUG-(N)x-5′ [where N is 
any one of the A, U, G, C and x = 8 to 10] will block the slippery 
sequence and antisense oligonucleotides against pseudoknots 
forming sequences may stop the translation of the viral 
RNA by ribosome shifting [22-24]. The polynucleotides can 
easily be design synthesize and delivered by well-tailored 
nanoparticle carriers. Ligands like EGF/folate attached 
with nanoparticles surface (oligonucleotides loaded) would 
easily be delivered to the affected tissues by ligand-receptor 
complex formation where there is overexpression of the 
cognate receptors, including EGFR/CD44 and subsequent 
endocytosis will bring them into the sites of action [25,26]. 
Figure 1 for the overall procedure in brief.

Figure 1: Source of the viral RNA pseudoknots.
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It could be tested within seven days against lung cancer 
cell line or animal model.
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