Editorial Volume 8 Issue 2

Received Date: August 03, 2023 Published Date: September 05, 2023

DOI: 10.23880/nnoaj-16000178

Artificial Intelligence and Neuro-Medicine: Emerging Trends in Bipolar Disorder, Glioblastoma and Alzheimer's Disease

Pandey S*

Head, Department of Clinical Research, Indira IVF Hospital, India (Formerly)

*Corresponding author: Dr. Saumya Pandey, Ph.D. (Life Science) Head, Department of Clinical Research, Indira IVF Hospital, Udaipur-Lucknow, India (Formerly), Tel: 9473720367; Email: drsaumyapandey11@gmail.com

of asymptomatic vs borderline vs symptomatic subsets.

Keywords: Etiopathogenesis; Neurological Disorders; Alzheimer's Disease: Neurons

Abbreviations: AI: Artificial Intelligence; O-Methylserine Dodecylamide.

Editorial

Dissecting the intricate "neuro-immune cross-talks" in the complex etiopathogenesis of neurological disorders primarily bipolar disorder, glioblastoma and Alzheimer's disease in genetically disparate susceptible cohorts of heterogeneous population-pools by amalgamating precision-based therapeutic targeting of Ceramide-Wnt/ Frizzled-Toll like receptors-autophagy biochemical/ metabolic signaling cascades with Artificial Intelligence (AI) offers fascinating healthcare management avenues in eventual pragmatic, evidence-based predictive biomarker development in the Covid-vaccination era [1-4]. Moreover, CRISPR-Cas genetic engineering technology has emerged as an enigmatic modulator of complex human genetic diseases including neurological diseases utilizing genome editing and detecting specific DNA/RNA sequences to gene expression control warranting future dynamic collaborations for immuno-inflammatory disease(s)-management in neuromedicine in the global Covid-19/Omicron pandemic and Covid-19 vaccination era [5]. In my expert opinion, the disproportionate share of psychosocial distress and neurobehavioral deficits warrants a robust, evidence-based, pragmatic "AI-bioengineering immunotherapeutic model" for design of pharmacological scaffolds, novel drugs and clinically validated predictive biomarkers for effective management of bipolar disorder, Alzheimer's disease and glioblastoma amongst genetically susceptible at-risk cohorts

During my recent meaningful collaborative discussions with senior neurosurgeons of Virginia, USA and Lucknow/ New Delhi, India, I gained critical insights in the AI algorithms and sophisticated, non-invasive gammaknife neuro-radio-surgery for precision-based neuroradiodiagnostic assessment of the hypoxic, vascular insufficient and inflammatory tumor microenvironment/ heterogeneous tissue core in the malignant brain tumor tissue of glioblastoma patients of American and Asian-Indian genetic profiles/ethnicities for evidence-based outcomes for high-quality treatment and patient-satisfaction.

Abnormal endocytosis in post-mitotic neurons may be attributed to alterations in the sphingomyelin -ceramide metabolism, resulting in the intracellular accumulation of ceramide; O-methylserine dodecylamide (MSD), a lysosomotropic agent, disrupts neuronal lysosomal proton gradient, leading to intra-neuronal ceramide accumulation, and perturbations in the intracellular transport of cholesterol and sphingolipids have been proposed to play a significant role in Alzheimer's disease [6]. Intriguingly, the emergence of AI in neuro-medicine clinical research undoubtedly offers immense opportunities to demystify the intricacies involved in neurodegeneration and interrelated neuropathologies. Healthcare systems globally are encouraging AI to achieve the "quadruple objective": improving patient experience (increasing productivity and efficacy in care delivery); improving population health; transcribing prescriptions, treating patients remotely, and reducing per person healthcare expenses [7-10]; and increasing the working conditions of healthcare professionals.

Neurology & Neurotherapy Open Access Journal

AI algorithms are extensively used in healthcare, including diagnostics, development of treatment protocols, medication research, customized treatment regimens, clinical risk assessment, healthcare data security, image analysis, digital nursing assistants, AI-assisted robotic surgery, and health monitoring. Overall, the future holds tremendous promise for designing a well-defined pragmatic and ethical "AI-Ceramide-TLR-Autophagy-Wnt/CRISPR-Cas Neuro-Immune Genetic Blue-Print" healthcare roadmap for diminishing the overwhelming public health challenge of bipolar disorder, glioblastoma and Alzheimer's Disease amongst population-pools of genetically mixed ethnicities worldwide.

Acknowledgements

Dr. Pandey acknowledges her collaborative clinical and biomedical research 1-1 discussions related to Ceramide-Autophagy-Wnt-TLRs and immune-inflammatory diseases at UT-MDACC, Houston, TX, USA/New York Presbyterian-Weill Cornell Medical College, New York, NY, USA.

References

- Pandey S (2022) Toll-Like Receptors-Autophagy Immuno-Inflammatory Networks as Molecular Rheostats" in Hypoxic Tumor Microenvironment in Complex Neurological Diseases Primarily Glioblastoma and Spinal Meningioma: Translational Research Perspective with Public Health Impact in Genetically Susceptible Population-Pools in Covid-19/Omicron Pandemic Era. EC Neurology 14(7): 1-2.
- Pandey S (2020) IL-6 induced upregulation of T-type Ca2+ currents and sensitization of DRG nociceptors is attenuated by MNK inhibition: Translational Research Perspective. Journal of Neurophysiology 124(1): 305-

306.

- 3. Pandey S, Chandravati (2013) Targeting Wnt-Frizzled signaling in Cardiovascular Diseases. Molecular Biology Reports 40: 6011-6018.
- 4. Pandey S, Agrawal DK (2006) Immunobiology of Toll-like Receptors: Emerging trends. Immunology and Cell Biology 84(4): 333-341.
- Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS (2022) From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Frontiers in Molecular Biosciences 9: 1070526.
- Pandey S, Murphy RF, Agrawal DK (2007) Recent advances in the immunobiology of Ceramide. Experimental and Molecular Pathology 82(3): 298-309.
- 7. Briganti G, Moine OL (2020) Artificial intelligence in medicine: Today and tomorrow. Frontiers in Medicine 7: 27.
- 8. Bodenheimer T, Sinsky C (2014) From triple to quadruple aim: care of the patient requires care of the provider. Annals of Family Medicine 12(6): 573-576.
- Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A (2018) Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathologica 135(2): 227-247.
- 10. Pruitt KD, Kerna NA, Carsrud NDV, Holets HM, Chawla S, et al. (2023) Artificial Intelligence: Applications and Effectiveness in the Healthcare Delivery System. EC Clinical and Medical Case Reports 6(7): 1-22.

