
Open Access Journal of Astronomy 
ISSN :2996-6701MEDWIN PUBLISHERS

Committed to Create Value for Researchers

Big Data in the Astronomical Field Open J of Astro

Big Data in the Astronomical Field

Yuan P*
Guangdong Baiyun University, China
 
*Corresponding author: PU Yuan, Guangdong Baiyun University Baiyun, Guangzhou, Guangdong 
Province, China, Email: puyuan@baiyunu.edu.cn

Mini Review
Volume 2 Issue 1

Received Date: June 05, 2024

Published Date: June 20, 2024

DOI: 10.23880/oaja-16000116

Abstract

From the beginning, astronomy is in the big data era. There are plenty of data sizes, types, sources, resolutions, etc. for the 
astronomical data. This paper gives a short description of astronomical data, and provides the links to some famous telescopes. 
Furthermore, this paper gives a short summary for AI (Artificial Intelligence) applications in astronomy. It calls on more AI 
researchers to join the research in astronomical data.
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Abbreviations: EM: Electromagnetic Radiation; GWs: 
Gravitational Waves; LAMOST: Large Sky Area Multi-Object 
Fiber Spectroscopy Telescope; IRIS: Interface Region Imaging 
Spectrograph; HERA: Hydrogen Epoch of Reionization 
Array; FAST: Five-hundred-meter Aperture Spherical radio 
Telescope; WISE: Wide-field Infrared Survey Explorer; SDSS: 
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Introduction

The word ‘big data’ is a commonly used term now, which 
has no an official definition but describes the explosive 
growth in data volume, velocity, and variety [1]. It becomes 
popular along with the growth of social media in internet. 
But in fact, the dawn of big data is with the operation of 
new technically advance telescopes at the very beginning. 
Hundreds of telescopes around the world are collecting 
different types of astronomical data day and night, so that 
‘big data’ is firstly generated in human’s history.

Now, with the fast development of techniques, more 
and more telescopes are built or being built or in planning. 
Multiwavelength and multi-messenger studies are becoming 
popular in current research [2]. 

From γ-ray to radio, from neutrinos to gravitational 
waves, the family of astronomical datasets is growing faster 
and faster [3]. And the volume of the datasets is also growing 
very fast. For example, the spectral amount of LAMOST 
(Large Sky Area Multi-Object Fiber Spectroscopy Telescope) 
has reached 46,941,395 for its medium resolution, and 
11,939,296 for its low resolution [4]. 

Astronomical data has different types: spectrum looks 
like an electrocardiogram which is a kind of 1D signal; 
photometric image is from photometric survey and indeed 
a 2D image, with different bands (generally 5, u(305.5-
403.0nm), g(379.8-555.3nm), r(541.8-699.4nm), i(669.2-
840.0nm), z(796.5-1087.3nm)) [5]; infrared image is also 
a kind of 2D image with 4 bands (W1(2.8-3.8μm), W2(4.1-
5.2μm), W3(7.5-16.5μm), W4(20-28μm)) [6]. Of course, 
there are more types of astronomical data, and this paper 
will give a summary about this.

Generally speaking, big data has 5 ‘V’ characteristics: 
Volume, Variety, Velocity, Veracity, Value [1]. Sometimes there 
are more: Variability, Visualization. Astronomical data has 
all of these. This brings a lot of difficulties for astronomers 
to handle the huge datasets. Without AI, they may spend 
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~ 80% of their time for purely cleaning and preparing the 
observationally obtained data, which becomes a disaster 
for astronomers because this is not research for them. The 
tedious ‘mechanical works’ include checking data (types of 
columns, names, duplicate entries, outlier values, variables, 
scaling, normalizations, etc.), selecting data (classes, 
parameters, locations, etc.), finding useful/relative/special 
data etc.

AI is the right tool to handle these ‘mechanical works’. 
‘Research in AI has focused chiefly on the following 
components of intelligence: learning, reasoning, problem 
solving, perception, and using language’ [7]. And AI learns 
from data, especially big data. ‘Although many AI technologies 
have been in existence for several decades, only now are 
they able to take advantage of datasets of sufficient size to 
provide meaningful learning and results’ [8]. The ‘must’ 
techniques like clustering, classification in astronomical data 
processing are the basic ones in AI, as well as determining 
data type, data cleaning, exploration, visualization, feature 
selection, identification, etc. Therefore, with the fast growth 
of astronomical big data, AI is playing a more and more 
important role in astronomy. On the other hand, big data can 
help obtain correct results over human errors, and it is the 
fuel of AI engine. 

Astronomical Datasets

According to the dimensions of data, astronomical 
datasets can be classified as 1D, 2D, 3D; according to time-
dependency, there are time-variant, and time-invariant; 
according to multi-messenger, there are electromagnetic 
radiation (EM), gravitational waves (GWs), neutrinos and 
cosmic rays [9,10]. And astronomical datasets are often 
along with telescopes. For one telescope, generally there is at 
least one dataset published. And the type of dataset depends 
on the type of the telescope.

Cosmic rays are charged particles deflected by the 
magnetic fields between and within galaxies, so hard to be 
traced back to their origins.

Neutrinos are neutral and can be detected by the 
instruments like IceCube [11]. And the newest data release 

is in https://icecube.wisc.edu/data-releases/2023/07/
icecube-hese-12-year-data-release/. GWs may come from 
compact binary merger. The most famous detector is from 
LIGO (Laser Interferometer Gravitational-wave Observatory) 
[12]. A dataset description file can be found by https://dcc.
ligo.org/public/0009/M1000066/027/LIGO-M1000066 
-v27.pdf. And the data release link is https://gwosc.org/
eventapi/html/. 

As for EM, there are radio, microwave, infrared, optical, 
X-ray, gamma-ray. Interface Region Imaging Spectrograph 
(IRIS) obtains high, resolution UV spectra and images of the 
sun’s chromosphere [13]. And its dataset is in https://iris.
lmsal.com/data.html. One of the most famous radio datasets 
is from FAST (Five-hundred-meter Aperture Spherical radio 
Telescope), and one link is https://blinkverse.alkaidos.
cn/ #/availability. The most famous infrared dataset is 
from WISE (Wide-field Infrared Survey Explorer), and its 
link is https://wise.ssl.berkeley.edu/astronomers.html. As 
for optical datasets, SDSS (Sloan Digital Sky Survey) is one 
of the most famous. And its link is https://www.sdss.org/
dr18/. It has the biggest optical image dataset. When talking 
about spectrum, LAMOST has the biggest spectral dataset in 
the world, whose link is https://www.lamost.org/lmusers/. 
An X-ray dataset can be found in the link of https://www.
cosmos.esa.int/web/xmm-newton/xsa, which is belonging 
to Max Planck Institute [14]. 

INTEGRAL is the International Gamma-Ray Astrophysics 
Laboratory of the European Space Agency [15]. It observes 
the Universe in the X-ray and soft gamma-ray band. And its 
dataset is in http://www.isdc.unige.ch/integral/archive. 

The link https://www.cosmos.esa.int/web/esdc gives 
the ‘ESAC SCIENCE DATA CENTRE’, which integrates a lot of 
astronomical datasets from the European Space Agency’s 
website. Inside it there is a famous plan called Gaia [16], 
which can collect 3D data for celestial bodies.

Currently there are hundreds of telescopes collecting 
huge data daily. And it’s difficult to list all of them in one 
paper. This section just gives some famous ones, while Table 
1 as an uncompleted table may be a short summary.

Name of Telescopes (Websites) Approx. size of 
dataset

Models of AI 
used Efficiency Significant Result

IceCube (https://icecube.wisc.edu/) 4GB A decoherence 
model High Searching for Decoherence 

from Quantum Gravity
LIGO (https://gwosc.org/data/) ~10 TB/year DLHub / cuDNN High Detection of Gravity Wave

IRIS (https://iris.lmsal.com/) ~1GB/day Cross-correlation High Coronal Loops
FAST (https://blinkverse.alkaidos.cn/) 7-10PB/year HiFAST High FRB Detection
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WISE (https://wise.ssl.berkeley.edu/) 15.6TB/14 mons CNN High Mid-infrared Survey of the 
Entire Sky

SDSS (https://www.sdss.org/) 15TB CNN High Star Catalog
LAMOST (https://www.lamost.org/) 7TB Transformer High Spectra
(‘Models of AI used have a lot in fact, 

because different tasks need different 
models)

Table 1: Datasets from various telescopes with AI models in relevant publications.

The Trend of using AI in Astronomical Data 
Processing

With the big data in astronomy and the fast development 
of AI, in recent years AI has become popular in astronomical 
data processing. This is because of 3 characteristics of 
astronomical data: 
Huge Volume: Astronomy has come to the big data era, 
and the traditional manual measurement ways are losing 
supporters, even for the most conservative astronomers; 
Difficult in the Definition of Useful Features: Color, shapes, 
texture, the traditional features have already been used to 
their physical limits, even with the most powerful telescopes. 
However, machine learning with data-driven methods can 
bypass the feature design step, as well as mine the unseen/
subtle features of the astronomical data; 
Heavy Noises: Telescopes are always challenging mankind’s 
technical limit. So the noises in the signals collected are often 
heavy especially focusing on the deep universe. Machine 
learning can enhance the results and help reaching the limits 
of mankind’s techniques.

GWs are searched from neutron stars using Hough 
transform, Bayes’ theorem, Hidden Markov Models, et al. 
[17].

A radio interferometer in HERA (Hydrogen Epoch of 
Reionization Array) can generate over 50 terabytes (TB) of 
data each night [18]. Deep learning methods are more and 
more applied in radio signal processing, especially for FRB 
(Fast Radio Burst) searching [19].

Infrared images from WISE are mined to do celestial 
bodies’ classification [20]. Photometric data from SDSS are 
used to estimate redshifts of quasars [21].

A comprehensive review about AI applied in astronomy 
can be seen in [22].

Conclusions

In big data era, AI researchers are hunting for good 
application fields to show their muscles. Astronomy is not a 

popular ‘rich’ field but a real big data field. All the newest 
AI technologies could try to find a suitable application in 
astronomical data processing. It’s not a new interdisciplinary 
topic but rarely to be noticed by AI circle before. This paper 
gives some classic datasets in astronomy, and calls on the 
attention from AI field. Astronomy has enough data for AI to 
try different algorithms.

Astronomical society has fell into AI field for quite 
some time. They even use ChatGPT to process astronomical 
papers to generate an omniscient ‘sage’ of astronomy. And 
in the famous astronomical journals like Nature Astronomy, 
ApJs, MNRAS, etc., there have been plenty of papers using AI 
algorithms.
It can be believed that, with the new telescopes’ big data 
growing larger and larger, AI will play a key role in the future 
in astronomy.
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