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Abstract

In this paper, we obtained a new class of solutions for the Einstein-Maxwell field equations with a charged anisotropic matter 
distribution considering the dark energy equation of state rp ωρ= , where ω is the dark energy parameter, is the radial pressure 
and is the energy density. We have chosen a form for the metric potential proposed for Tolman (1939) known as Tolman IV 
type potential. We found that the physical properties as the radial pressure, the anisotropy, energy density, mass function are 
regular and well behaved in the stellar interior but the strong energy condition is violated. The models are consistent with the 
upper limit on the mass of compact stars for Her X-1, 4U1538-52 and SAXJ1808.4-3658.
      
Keywords: Dark Energy Stars, Compact Stars, Tolman IV Potential, Anisotropy, Strong Energy Condition 

Abbreviation: SEC: Strong Energy Condition.

Introduction

The general theory of relativity is the most useful 
gravity theory to understand the behavior of stellar matter 
subjected to strong gravitational fields as neutron stars, 
white dwarfs and quark stars and gravitational collapse [1,2]. 
In the search of solutions of Einstein’s field equations, it is 
important to mention the pioneering works of Schwarzschild 
K [3], Tolman RC [4], Oppenheimer JR, et al. [5] and 
Chandrasekhar S [6]. Schwarzschild K [3] obtained interior 
solutions that allows describing a star with uniform density, 
Tolman RC [4] generated new solutions for static spheres 
of fluid Oppenheimer JR, et al. [5] studied the gravitational 
equilibrium of neutron stars using Tolman’s solutions and 
Chandrasekhar S [6] produced new models of white dwarfs 
in presence of relativistic effects.

Current astronomical data as the measurements of 
supernovas of type Ia and microwave background radiation 

are the most direct evidences of the accelerated expansion 
of the universe [7]. The explanation for this cosmological 
behavior in the framework of general relativity requires 
assumption that a considerable part of the Universe consists 
of a hypothetical dark energy with a negative pressure 
component [8], which is a cosmic fluid parameterized by 
an equation of state p pω=  with 1 1 3ω− ≤ < − where p is 
the spatially homogeneous pressure and ρ the dark energy 
density [9-13]. The interval of values of ω comes from the 
Friedman cosmological models which assume isotropic 
pressures p. The range for which 1ω < −  has been denoted 
as phantom energy and possesses peculiar properties, such 
as negative temperatures and the energy density increasing 
to infinity in a finite time, resulting in a big rip [8-10]. It 
also provides a natural scenario for the existence of exotic 
geometries such as wormholes [11-13].

The existence of dark energy fluids comes from the 
observations of the accelerated expansion of the Universe 
and the isotropic pressure cosmological models give the best 
fitting of the observations but when these kind of fluids are 
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taken to the scenario of star model and gravitational collapse 
the anisotropy may be important [14]. According Lobo FSN 
[9] the notion of dark energy is that of a homogeneously 
distributed cosmic fluid and that when extended to 
inhomogeneous spherically symmetric spacetimes, the 
pressure appearing in the equation of state shows a negative 
radial pressure; the tangential pressure must be determined 
by applying the general stability formalism developed by 
Lobo FSN, et al. [15]. Chan et al. [14] have proposed that the 
mass function is a natural consequence of the Einstein´s field 
equations and hence can be a core factor with a homogeneous 
energy density, described by the Lobo´s first solution [9]. 
Malaver M, et al. [16] presented a new model of dark energy 
star by imposing specific choice for the mass function that 
corresponds to an increase in energy density inside of the 
star. Bibi R, et al. [10] obtained a new class of solutions of 
the Einstein-Maxwell field equations representing a model 
for dark energy stars with the equation of state pr=-ρ. 
Malaver M, et al. [17] found a new family of solutions to the 
Einstein-Maxwell system considering a particular form of 
the gravitational potential Z(x) and the electric field intensity 
with a linear equation of state that represents a model of dark 
energy star. Malaver M, et al. [18] generated a dark energy star 
model with a quadratic equation of state and a specific charge 
distribution. Dayanandan B, et al. [19] studied the properties 
of dark energy stars with anisotropic fluid distribution 
using Tolman IV type gravitational potential. More recently, 
Malaver, et al. [20] obtained new solutions of Einstein’s field 
equations for dark energy stars within a Buchdahl spacetime 
by considering nonlinear electromagnetic field. According to 
Chan R, et al. [15] the denomination of dark energy is applied 
to fluids which violate only the strong energy condition 

(SEC) given by 2 0r tp pρ + + ≥  where ρ is the energy density, 
pr and pt are the radial pressure and tangential pressure, 
respectively. The dark energy star may possible have an origin 
in a density fluctuation in the cosmological background but 
it is uncertain how such inhomogeneities in the dark energy, 
may be formed [9].

Recently, astronomical observations of compact objects 
have allowed new findings of strange stars that adjust to 
the exact solutions of the 4-D Einstein field equations; data 
on mass maximum, redshift and luminosity are some of 
the most relevant characteristics for verifying the physical 
requirements of these models [21]. A great number of exact 
models from the Einstein-Maxwell field equations have been 
generated by Gupta YK, et al. [22], Kiess TE [23], Takisa MP, 
et al. [24], Malaver M, et al. [25], Malaver M [26,27], Ivanov 
BV [28] and Sunzu JM, et al [29]. In the development of these 
models, several forms of equations of state can be considered 
[30]. Komathiraj K, et al. [31], Malaver M [32], Bombaci I 
[33], Thirukkanesh S, et al. [34], Dey M, et al. [35] and Usov 
VV [36] assume linear equation of state for quark stars. 

Feroze T, et al. [37] considered a quadratic equation of state 
for the matter distribution and specified particular forms for 
the gravitational potential and electric field intensity. Takisa 
MP, et al. [24] obtained new exact solutions to the Einstein-
Maxwell system of equations with a polytropic equation of 
state. Thirukkanesh S, et al. [38] has obtained particular 
models of anisotropic fluids with polytropic equation of 
state which are consistent with the reported experimental 
observations. Malaver M [39] generated new exact solutions 
to the Einstein-Maxwell system considering Van der Waals 
modified equation of state with polytropic exponent. Tello-
Ortiz F, et al. [40] found an anisotropic fluid sphere solution 
of the Einstein-Maxwell field equations with a modified 
version of the Chaplygin equation of state. Malaver M, et 
al. [41,42] modeled a compact star with anisotropic matter 
distribution considering the new version of Chaplygin fluid 
equation of state [41,42].

The analysis of compact objects with anisotropic matter 
distribution is very important, because that the anisotropy 
plays a significant role in the studies of relativistic spheres 
of fluid [43-55]. Anisotropy is defined as t rp p∆ = −  where 

rp  is the radial pressure and is the tangential pressure. 
The existence of solid core, presence of type 3A superfluid, 
magnetic field, phase transitions, a pion condensation 
and electric field are most important reasonable facts that 
explain the presence of tangential pressures within a star 
[36,56]. Many astrophysical objects as X-ray pulsar, Her 
X-1, 4U1820-30 and SAXJ1804.4-3658 have anisotropic 
pressures. Bowers RL, et al. [55] include in the equation of 
hydrostatic equilibrium the case of local anisotropy. Bhar P, 
et al. [57] have studied the behavior of relativistic objects 
with locally anisotropic matter distribution considering the 
Tolman VII form for the gravitational potential with a linear 
relation between the energy density and the radial pressure. 
Malaver M [58,59], Feroze T, et al. [37,60] and Sunzu JM, 
et al. [29] obtained solutions of the Einstein-Maxwell field 
equations for charged spherically symmetric space-time by 
assuming anisotropic pressure. 

With ongoing PHYSICS research breakthrough 
understanding of the general relativistic quantum vector 
time, studying nature of time, shows nonlinear aspects of 
time which aren’t explainable with a mere scalar property 
of time that we use in our clocks (arithmetic time), but 
would require knowledge of tensor PHYSICS [61]. Currently, 
research is underway to determine rank level of this 
tensor, which group theory points to being more than four, 
having both vector and scalar aspects, based on operator 
algebra PHYSICS [61]. Algebraic vector time would be most 
prevalent in the quantum astro levels, where sense gives 
field effect to time [61,62]. It’s quite noteworthy that vacuum 
flat space may be characterized by error function solutions 
with diffusion Fick’s formulation that corresponds with 
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Schrodinger equation at this level [62] which is linked to 
signal/noise ratio of a distorted noisy superluminal general 
condensate [63,64].

The aim of this paper is to generate new class of 
solutions which represents a potential model of dark energy 
stars whose equation of state is rp ωρ=  with charged 
anisotropic matter distribution using Tolman IV solution 
for the gravitational potential Z and a particular form for 
the electric field intensity. The system of field equations has 
been solved to obtain analytic solutions which are physically 
acceptable. We assume that the denomination dark energy is 
applied to fluids which violate the strong energy condition 
and not satisfy the causality conditions [9]. This article is 
organized as follows, in Section 2, we present Einstein´s 
field equations. In Section 3, we make a particular choice 
of gravitational potential Z(x) that allows solving the field 
equations and we have obtained new models for dark energy 
stars. In Section 4, a physical analysis of the new solutions is 
performed. Finally in Section 5, we conclude.

Einstein-Maxwell Field Equations

We consider a spherically symmetric, static and 
homogeneous spacetime. In Schwarzschild coordinates the 
metric is given by

        2 2 ( ) 2 2 ( ) 2 2 2 2 2( sin )r rds e dt e dr r d dν λ θ θ ϕ= − + + +              (1)

where ( )rν  and ( )rλ  are two arbitrary functions. 

The Einstein field equations for the charged anisotropic 
matter are given by

                              ( )2 2 2
2

1 2 11
2

e e E
rr

λ λλ ρ− −− + = +                     (2)

                           ( )
'

2 2 2
2

1 2 11
2re e p E

rr
λ λν− −− − + = −                  (3)

                          2 2 21
2te p E

r r
λ ν λν ν ν λ− ′ ′ ′′ ′ ′ ′+ + − − = + 
 

        (4)

                                            2
2

1 ( )e r E
r

λσ − ′=                                   (5)

where ρ  is the energy density, rp  is the radial pressure, E 
is electric field intensity, is the tp  tangential pressure and 
primes denoting differentiations with respect to r. Using the 

transformations, 2x cr= ,  and 2 2 2 ( )( ) rA y x e ν=
with arbitrary constants A and c>0, suggested by Durgapal 
MC, et al. [65], the Einstein field equations can be written as

                                     
21 2

2
Z EZ
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− = +                                    (6)
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− −
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                                               t rp p= + ∆                                          (9)
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 

 
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                                        ( )22 4cZ xE E
x

σ = +                                (11)

is the charge density, t rp p∆ = −  is the anisotropic factor 
and dots denote differentiation with respect to x. With the 
transformations of [65], the mass within a radius r of the 
sphere takes the form 

                               ( )2
3/2

0

1
4c

x

m(x)= x E dxρ∗ +∫                     (12)

 where 
1 2Z Z c

x
ρ∗ − = − 

 


 The interior metric (1) with the charged matter distribution 
should match the exterior spacetime described by the 
Reissner-Nordstrom metric:

 

12 2
2 2 2 2 2 2 2

2 2

2 21 1 ( sin )M Q M Qds dt dr r d d
r rr r

θ θ ϕ
−

   
= − − + + − + + +   

   
  

(13)

where the total mass and the total charge of the star are 
denoted by M and q2, respectively. The junction conditions at 
the stellar surface are obtained by matching the first and the 
second fundamental forms for the interior metric (1) and the 
exterior metric (14). 
In this paper, we assume the following equation of state 

                                        rp =ωρ                                                   (14)

where ω is the dark energy parameter.
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New Class of Model

 In order to solve the Einstein field equations, in this 
research we have chosen particular forms for the metric 
potential Z(x) and the electric field intensity E. Following 
Tolman RC [4] and Lighuda AS, et al. [66] we take the forms, 
respectively

                                         ( )( )
( )

1 1
( )

1 2
ax bx

Z x
ax

+ −
=

+
                        (15)

                                 ( )( )
( )

2 1 1
( )

2 1 2
ax bxE = kxZ x kx

C ax
+ −

=
+

            (16)

where a is a real constant and k ˃ 0. The metric potential 
is regular at the origin and well behaved in the interior of 
the sphere. The shape of the electric field is a monotonic 
increasing function, regular at the centre, positive and 
remains continuous inside of the star.

Substituting eq. (15) and eq. (16) in eq. (6) we obtain

   
   
  

( )2

2 (1 ) 2 (1 ) (1 )(1 )
1 2

4 (1 )(1 )
1 2

a b abx b ax a bx kx ax bx
ax

c a ax bx
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ρ

+ + + + − − − + − 
 + = + − + + 

    (17)

Replacing (17) in (14) we have for the radial pressure
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Using (17) in (12), the expression of the mass function is
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With (15) and (16) in (11), the charge density is
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With (15), (16) and (17), the eq. (7) becomes
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 Integrating (21) we obtain
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The metric functions can be written as
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and the anisotropy is given by for 
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Elementary Criteria of Physical Acceptability

For a model to be physically acceptable, the following 
conditions should be satisfied [10,38]: 
(i) The metric potentials 2e λ  and 2e ν  assume finite values 

throughout the stellar interior and are singularity-free 
at the center r=0. 

(ii) The energy density ρ should be positive and a decreasing 
function inside the star .

(iii) The radial pressure also should be positive and a 
decreasing function of radial parameter but for negative 
pressure this condition is not satisfied. 

(iv) The density gradient 0d
dr

ρ ≤  for 0 r R≤ ≤  . 

(v) The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0. 
(vi) Any physically acceptable model must satisfy the 

causality condition, that is, for the radial sound speed 
2 r
sr

dpv
dρ

=  , we should have 20 1srv≤ ≤  but the dark energy 

case this condition nor is it satisfied. 
(vii) The consideration of dark energy is applicable only to 
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fluids that violate the strong energy condition.
(viii) The charged interior solution should be matched with 

the Reissner–Nordström exterior solution, for which the 
metric is given by the equation (13). 

The conditions (ii) and (iv) imply that the energy density 
must reach a maximum at the centre and decreasing towards 
the surface of the sphere.

Physical Features of New Model 

For the new models, the metric potentials 2e λ  and 2e ν  
have finite values and positive in the stellar interior. At the 
origin r=0, ( )2 0 1e λ = , ( ) ( )22 0 2 2

1 1 Be A cν = −  and 

( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= = . This verifies that the metric 

potentials are regular at the center and well behaved. 
The energy density is positive and decreasing from the center 
to the surface of the star. In the origin ( )( 0) 3r c a bρ = = +  

and ( )( 0) 3rp r c a bω= = +  therefore the energy density will 

be non-negative in r=0 and ( 0) 0rp r = < .

For the density gradient inside the stellar interior, we 
obtain 
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 (29)

 For the first fundamental form, at the boundary r=R the 
solution must match the Reissner–Nordström exterior 
space–time as: 

( )
12 2

2 2 2 2 2 2 2
2 2

2 21 1 sinM Q M Qds dt dr r d d
r rr r

θ ϕ
−

   
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r ≥ R

and therefore, the continuity of and across the boundary r=R 
is

                                    
2

2 2
2

21 M Qe e
R R

ν λ−= = − +                          (30)

 
M and Q represent the total mass and charge inside the 

fluid sphere, respectively. By matching the interior metric 
function Z(x) with the exterior Reissner-Nordström metric 
at the boundary r=R 

     ( )( )( )2 2 4 2 2

2

1 2 2 1 1 12
1 2

acR Kc R acR bcRM
R acR

+ + − + −
=

+
      (31)

In the surface of the star ( ) 0rp r R= =  and for the second 
fundamental form we have

( ) ( ) ( )
( )

2 4 8 2 3 6 2 2 4 2 22 3 2 6 3 2 7

3 0

Ka bc R ab a Kc R a b Ka Kb c R a ab K cR

a b

+ − + − + + + −

+ + =

(32)

In the table 1 shows the values of the physical parameters 
a, b, K and the stellar masses. Following Dayanandan and 
Smitha [19] have been chosen for a and b the values a=0.0031 
and b=0.0045. 

K a b M(Mʘ)
0.00031 0.003 0.005 0.9
0.00033 0.003 0.005 0.83
0.00034 0.003 0.005 0.8
0.00035 0.003 0.005 0.77

Mʘ = sun’s mass
Table 1: Parameters k, a, b and new stellar masses. 

Figures 1-5 represent the plots of M, 
2

2
E

c
  ,  2σ  ,  d

dr
ρ  and   

with the radial coordinate for different values of K. In all the 
graphs we considered c=1. 

Figure 1: Mass function against the radial coordinate 
for K= 0.00031 (solid line), K= 0.00033 (long-dash line), 
K=0.00034 (dash-dot line) and K=0.00035 (space-dot 
line). For all the cases a=0.0031, b= 0.0045.
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Figure 2: Electric field intensity against the radial 
coordinate for K=0.00031 (solid line), K=0.00033, (long-
dash line), K=0.00034 (dash-dot line) and K=0.00035 
(space-dot line). For all the cases a=0.0031 and b=0.0045. 

Figure 3: Charge density against the radial coordinate 
for K=0.00031 (solid line), K=0.00033 (long-dash line), 
K=0.00034 (dash-dot line) and K=0.00035 (space-dot 
line). For all the cases a=0.0031 and b=0.0045. 

Figure 4: Energy density against the radial coordinate 
for K=0.00031 (solid line), K=0.00033 (long-dash line), 
K=0.00034 (dash-dot line) and K=0.00035 (space-dot 
line). For all the cases a=0.0031 and b=0.0045.

Figure 5: Density gradient against the radial coordinate 
for K=0.00031 (solid line), K=0.00033 (long-dash line), 
K=0.00034 (dash-dot line) and K=0.00035 (space-dot 
line). For all the cases a=0.0031 and b=0.0045. 
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The behavior of mass function, electric field intensity 
and charge density with the radial parameter inside the 
star are presented in Figures 1-3 respectively. The Figures 
show that these physical variables are non-negative, the 
mass function and electric field are monotonically increasing 
throughout the fluid distribution while the charge density 
shows a decrease for all the chosen K values. Higher values 
of K mean an increase in electric field intensity and charge 
density, that is ˃ 0 for 0 ≤ r ≤ R, and a decrease in the values 
associated with the mass function. In Figure 4 is noted 
that energy density is monotonically decreasing and non-
negative function and shows a decrease in density with the 
radial coordinate with an increase in the values of K. In the 
Figure 5 is shown that for the gradient density ˂ 0 with the 
radial parameter for all the values of K, which is a condition 
for the physical acceptability of the model. 

The Figures 6-8 show the dependence of , anisotropy 
Δ and strong energy condition (SEC) respectively with the 
radial coordinate for different values pf ω . In all the cases 
a=0.0031, b=0.0045, K=0.00034 and c=1. In Figure 6 the 
radial pressure is negative and not a decreasing function 
of the radial parameter and takes lower values when ω is 
increased. The anisotropy is plotted in Figure 7 and it shows 
that vanishes at the centre of the star, Δ(r=0)=0 and we can 
also note that Δ admits higher values with a decrease of ω 
for ω=-0.65 and ω=-0.82 . The Figure 8 shows that the strong 
energy condition is violated for all ω values considered.

Figure 6: Radial pressure against radial coordinate for ω=-
0.48 (solid line); ω=-0.55 (long-dash line): ω=-0.65 (dash-
dot line); ω=-0.82. In all the cases a=0.0031, b=0.0045, 
K=0.00034 and c=1. 

Figure 7: Anisotropy against radial coordinate for ω=-
0.48 (solid line); ω=-0.55 (long-dash line): ω=-0.65 (dash-
dot line); ω=-0.82. In all the cases a=0.0031, b=0.0045, 
K=0.00034 and c=1.

Figure 8: SEC against radial coordinate for ω=-0.48 (solid 
line); ω=-0.55 (long-dash line): ω=-0.65 (dash-dot line); 
ω=-0.82. In all the cases a=0.0031, b=0.0045, K=0.00034 
and c=1. 
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We can compare the values calculated for the mass 
function with observational data of some astrophysical 
objects such as SAXJ1808.4-3658, 4U1538-52 and HerX-1 
[67-71]. The values of the stellar masses for these compact 
stars are tabulated in Table 2.

Compact Star Masses M(Mʘ) 
SAXJ1808.4-3658 0.903

 4U1538-52 0.87
 HerX-1 0.85

Table 2: The approximate values of the masses for the 
compact stars

These masses will be expected to have quantum effects, 
since per ongoing research of time and environment, the 
state of the clock affects environment vacuum oscillations, 
analogous to neutrino oscillations that change the flavor 
of the quark-gluon-plasma [72-75]. The underlying mass 
effects on dwarf compact stars, similar to mass of white 
dwarfs [6], perhaps will rationalize variations of energy 
density, pressure, mass function, charge density, anisotropy, 
the electric intensity of field, demonstrated successfully 
above [76-90].

The possibility of the existence of dark energy, 
responsible for the accelerated expansion of the Universe, is 
a topic of great interest in theoretical physics. In this context, 
the generalization of the gravastar picture with the inclusion 
of an interior solution governed by the equation of state p=ρω 
with ˂  -1/3, will be denoted by a dark energy gravastar or dark 
energy star in agreement with the Chapline definition [89]. 
Another possible explanation can be deduced from Nojiri S, 
et al. [90] where the dark energy star equation of state was 
generalized to include an inhomogeneous Hubble parameter 
dependent term, possibly resulting in the nucleation of a 
dark energy star through a density perturbation. 

Conclusion 

•	 In this work we found new class of solutions which 
represents a potential model for dark energy stars 
considering Tolman IV-type metric potencial.

•	 The radial pressure, energy density, anisotropy, mass 
function, charge density and all the coefficients of the 
metric behaves well inside the stellar interior and are 
free of singularities - In this model, the consideration 
of dark energy star is applied only to the cases where 
parameter ω not satisfy the strong energy condition.

•	 The obtained solutions match smoothly with the exterior 
of the Reissner–Nordström spacetime at the boundary 
r=R, because matter variables and the gravitational 
potentials of this work are consistent with the physical 

analysis of these stars. 
•	 The new models satisfy all the requirements for a compact 

negative energy stellar object and may be used to model 
relativistic configurations in different astrophysical 
scenes. We considered some known compact stars such 
as SAXJ1808.4-3658, 4U1538-52 and HerX-1 in order to 
verify observational data with the model proposed in 
this research. We have noted that the new stellar masses 
generated using the new model are in a range acceptable 
to realistic stars. 

•	 Current findings of the James Webb Telescope of six 
earlier formed massive galaxies have lent proof of the 
quantum nature with anisotropic matter astrophysics 
associating dark energy stars. These are quite possibly 
mirroring manifestation of nature of time that recent 
studies show nonlinear time clocks due to vector and 
scalar aspects, modeled to tensor of rank more than four 
for time. Vector nature of time will be evident only in 
quantum and astrophysical level and not in mesoscopic 
level explicitly resultant of sense giving field effects to 
time, space, or time-space, or neither.

•	 The origin of the universe may have linkage to noisy 
superluminal general condensate, that may portray dark 
energy. With random process, distorted fields may arise, 
in essence noise generating signal probabilistically as 
logic: noise =>: :<= noise + signal. Evaporation of the 
noise generates signals, condensation of signal reverts 
as noise, thus eternal genesis and annihilation events 
may proceed forever in nature. 
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