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Abstract

We calculate the masses of the nucleon resonances [N+(1440), N-(1535), N- (1650), N+(1710), N+(1880), N-(1895), N+(2100)] 
using an adaptation of the method of finite energy QCD sum rules (FESR) introduced recently in the determination of the 
masses of the vector meson resonances. This variation of finite energy sum rules involves as usual integration over a closed 
contour consisting of a circle of a large radius R and a cut in the complex energy (squared) plane. A specific integration kernel 
is used, however, which minimizes the integral over the cut. We obtain remarkably stable results over a wide range R, where 
R is the radius of the integration contour. The sum rule predictions agree well with the experimental values. We make use of 
the nucleonic correlator discussed in our previous FESR calculation of the nucleon mass.
      
Keywords: Sum Rules; QCD; Nucleon Resonance Masses

Abbreviations: OPE: Operator Product Expansion; FESR: 
Finite Energy Sum Rules. 

Introduction

QCD Sum Rules and Nucleon Resonance Masses

QCD sum rules based on the Borel transformation of 
the operator product expansion (OPE) were applied to the 
calculation of low energy properties of hardons starting with 
the pioneering paper of Shifman, et al. [1]. The method was 
soon afterwards applied to the nucleon by Furnstahl RJ, et al. 
[2,3]. An alternative more general approach is based on Finite 
energy sum rules (FESR) [4,5]. Most recently was applied we 
applied our approach to the calculation of all vector meson 
masses [6]. We Ioffe BL, et al. [2] here extend our work to the 
calculation of the masses of the nucleon resonances.

Consider the nucleon correlator

( ) ( ) ( )2 0 0 0iqxt q i dxe T xη ηΠ = = ∫
 where

( ) 5
abc

a b cu C u dλη ε γ γ γ=

The nucleon current proposed in Ioffe BL, et al [2]. In 
a previous work Nasrallah NF, et al. [7,8] we studied this 
correlator to calculate the mass of the nucleon. We used 
FESR with polynomial kernels designed to eliminate the 
contribution of the nucleon continuum. This continuum 
consists mainly of the

( ) ( ) ( ) ( ) ( ) ( ) ( )1440 , 1535 , 1650 , 1710 , 1880 , 1895 , 2100N N N N N N N+ + + + + − +
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Here we shall use a slightly modified integration kernel to 
calculate the masses of nucleon recurrences beginning with 

the Roper resonance N +(1440) (Equations 1-8).

The amplitude ( )tΠ can be decomposed as

( ) ( )1 2t q t tΠ = Π +Π  (1)

We shall work with ( )2 tΠ . At low energies

( ) 2
2 2

1 ...N
N

t m
t m

λΠ = − +
−

 (2)

where λ  is the coupling of the current to the nucleon.
At high energies
 

( ) ( ) ( )4 7 9
2 3 22 QCD B B

t B t I
t

n t
t

π Π ≈ − + +  (3)

 

The correlator and the parameters were given in Nasrallah 
NF, et al. [7,8] where we calculated the nucleon mass proper 
and presented a detailed analysis

2
3

34 1 0.908
2 sB qq a GeVπ  = + = − 

 
 (4)

( )
2

2 7
7

4 0.034
3 sB qq a G GeVπ

= =  (5)

( ) 36 9
9

1362 0.083
81 sB qq a GeVπ= − =  (6)

 
where we use for 0.10s

sa
α
π

= = , the quark condensate 

30.02qq GeV= −  and the gluon condensate 

2 40.013sa G GeV
π

= 

Figure 1: Integration Contour of FESR.

The basis of FESR is Cauchy’s theorem applied to the contour 
C of Figure 1 which implies
 

( ) ( ) ( ) ( ) ( )2 2 exp1 1Im
2

R

N N t R
cut

m P m dtP t t dt P t t
i

λ
π π =

− = Π + Π∫ ∫  (7)

On the circle of large radius R the exact correlator 
( )tΠ  can be replaced by its QCD expression ( )QCD tΠ .  

This is the usual definition of duality. The QCD correlator 
involves a perturbative part and a non-perturbative part 
which we parametrise by condensates [8]. We do not 
consider genuine duality violations.

Where P(t) is an entire function, e. g. a polynomial. Over 
the circle of large radius R the correlator ( )tΠ has been 
replaced by its QCD expression. The principal unknown in 
Equation 8 is the integral over the cut, i.e. over the higher 
nucleon resonances with mass 2

iNm R≤ . To minimize this 
integral (before neglecting it), a judicious choice of the 
weight-function P(t) has to be made. With the classic choice 
( ) ( )2

0expP t t M= −  the Borel variable 2
0M cannot be chosen 

too large because it would minimize the contribution of the 
nucleon. Also 2

0M cannot be too small because the unknown 
condensates in Equation 3 would explode. It was hoped in 1 
that a region of stability at an intermediate 2

0M can be found. 
This can be shown to be not the case 3. In our FESR approach 
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Nasrallah NF, et al. [7] we take P (t) to be a polynomial 

( )
max

0

n
n

n
n

P t c t
=

= ∑  (8)

It is clear that the order nmax cannot be chosen arbitrarily 
high because of the contribution of unknown higher 
condensates. To test the method we start with the nucleon 
proper (Equations 9-19). We choose 

( )
1

2
1 22, 1 1 1

N

t tP t R a t a t
Rm

  = − − = − −     
  (9)

where ( )
1 1

1 22 2

1 1 1,
N N

a R a R
Rm m R

= + = −

Equation 7 then becomes
( ) ( ) ( )4 2 3 2

3 2 9 22 N Nm P m B I R Bπ λ = − − + ∆  (10)

( ) ( ) ( )4 2 3 2
3 2 7 1 9 12 N Nm P m B I R B a Bπ λ = − − + + ∆  (11)

 where  ( ) ( )2
1 20 0

, , ,
R R

I dt t P t R I dt t P t R= =∫ ∫  (12)

and
( ) ( ) ( ) ( ) ( ) ( )4 4

1 2 2 22 Im , 2 Im
R R

thr thr
dt P t t dt t P t tπ π∆ = − Π ∆ = − Π∫ ∫ (13)

P (t) is designed to minimize the contribution of the 
continuum in Equation 7, i. e. to minimize the contribution of 

1 2∆ + ∆ so as to neglect it then. The nucleon mass is obtained 
from the ratio (Equations 10/ 11).
 
There is a wide region of stability R for ( )1I R and ( )2I R at 
around R = 3 GeV2 Using the sum rule Equation 7

( ) ( ) ( )4 2 3 2
1 3 2 9 22 N Nm P m B I R Bπ λ = − − − ∆  (14)

( ) ( ) ( )4 2 3 2
1 3 2 7 1 9 12 N Nm P m B I R B a Bπ λ = − − + − ∆  (15)

 where
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4

1 2 2 22 Im 2 Im
R R

thr thr
t dt tP t t and t dt t P t tπ π∆ = − Π ∆ = − Π∫ ∫  (16)

The delta’s denote the contribution of the nucleon 
continuum, they receive no contribution from the nucleon 
pole [9]. The aim is to choose P(t) which minimizes 1∆ and 

2∆ so as to neglect them and obtain mN from Equations (1/2). 
This was done in 7 from the choice

( ) 3 2
1 21 1 0.807 0.16P t a t a t t t= − − = − +  (17)

This choice minimizes the integral ( )
2

2

23

2

GeV

GeV
dt P t∫

For R = 2.5 GeV2 the result was
0.830 0.05Nm GeV= ±  (18)

 Note that to obtain the physical mass one has to add the 
contribution of the Σ-term. Using higher moments we get we 
get information on the higher resonances.
 
We Nasrallah NF, et al. [7,8] next proceed with a different 
choice for P (t) which eliminates ∆1,2 as well.

( ) 2
1

' , 1 1t tP t R
Rm

  = − −  
  

 (19)

 which vanishes at the mass of the m1, where m1 = mN 
(1440) is the mass of the First exited state (the Roper) where 
we expect the bulk of the contribution to the continuum to 
come from. R will be determined by stability considerations 
(Equations 20-28).

The expression for mN is 

( )

( )

' 9
2

2 3

' '7 9
1 1

3 3

N

BI R
B

m
B BI R a
B B

+
=

+ −
 (20)

 where
( ) ( )' 2 ' ' '

2 10 0
, , ,

R R
I dt t P t R I dt t P t R= =∫ ∫  (21)

( ) ' ' 2 ' '
1 2 1 22 2

1 1

1 1 11 ,P t a t a t a a
Rm m R

 
= − − = + = 

 
 (22)

 With 
2
Nm as an input, Equation 20 determine m1 as a function 

of R:
2

12.1 1.57R GeV m GeV= =

2
12.4 1.46R GeV m GeV= =

2
13.0 1.49R GeV m GeV= =

We Nasrallah NF, et al. [7,8] combine and quote

1 1.46 0.03m GeV= ±

The procedure can be repeated using the general formula

( )

( )
2

1

2
1

2
1

2

1

,

,
n

n

R

nm
n R

nm

dt t P t R
m

dt t P t R
−

−

+

+

=
∫
∫

  with               ( )1 2
1

, . 1 1n
n

t tP t R
Rm+

+

  = − −  
  

 (23)

 R being the maximum at which the maximum of 
( )2

1
1 ,

n

R

nm
dt t P t R

−
+∫  takes place (which is also close to the 

maximum of ( )2
1

2
1 ,

n

R

nm
dt t P t R

−
+∫
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We Nasrallah NF, et al. [7,8] list our results below 

( ) 2
2 1535 1.47 , 3.2Nm m GeV R GeV= = =

( ) 2
3 1650 1.57 , 3.5Nm m GeV R GeV= = =

( ) 2
4 1710 1.74 , 4.0Nm m GeV R GeV= = =

( ) 2
5,6 1880,1895 1.80 , 5.3Nm m GeV R GeV= = =

( ) 2
7 2100 1.98 , 6.4Nm m GeV R GeV= = =

The errors of the predicted masses of resonances are about 
±10%.

Heavy Baryons

The , , ,c b c bΛ Λ Ξ Ξ and their parity doublets can be treated by 
the same sum rule method using an integration kernel of the 
form [10]
 

( )' 2
'2, 1 1t tP t m

Rm
  = − −  
  

 (24)

 where m′ is mass of the first exited state or parity 
doublet and R is the radius of the circle of Figure (1).

 
We Nasrallah NF, et al. [7,8] first determine the mass of the 
ground state baryon for a knowledge of m′ and then determine 
m′ independently and self-consistently. We consider

( ) ( )
_

'1 12886.5 0, , 2593 0,
2 2c c

+   
Λ Λ      

   

( ) ( )
_

'1 15620 0, , 5912 0,
2 2b b

+   
Λ Λ      

   

In the correlator of Equation 7 we use the simplest current 
for 9

QΛ

We define as above

( ) )5 5
1
2

T T
abc a b a b cjQ u C d d C u Qγ γ= ∈ −  (25)

( ) ( )t qA t BtΠ = +  (26)

 On the hadronic side we make explicit the contribution of 
the positive and negative parity baryons,

( )
2 2

2 2A t
t m t m
λ λ+ −

+ −

= − −
− −

 (27)

( )
2 2 2 2

2 2

m mB t
t m t m
λ λ+ + − −

+ −

= − −
− −

 (28)

 where λ±  the coupling of the current Equation 25 to the 
corresponding states (Equations 29-36).

 
The QCD spectral functions have been obtained in Nasrallah 
NF, et al. [7,8], Ayala C, et al. [9] and Krasnikov V, et al. [10] 
and are conveniently expressed in Gorishnii SG, et al. [11], 
Kataev AL [12], Dominguez CA [13], Zyla PA, et al. [14], Wang 
ZG [15] and Zhao ZX, et al. [16].
 
We define ( ) ( )

4

4

3
128

Qm
A t a tρ

π
=

with

( ) ( )2

2 421 2
2 4 2

11 1
6Q

Qs

m
Q Q

ma GGta t dx x x
xm m t

π   
= − − + −      

   
∫  (29)

42

4 1 ...
6

Qs

Q

ma GG
tm

π  
− − +  

 

 
Consider now the integral ( ) ( )1

2 C
dt A t P t

iπ ∫  where C is the 
contour of Figure 1 in the complex t−plane.

We Nasrallah NF, et al. [7,8], Wang ZG [15] claim that our 
choice of the damping kernel P (t, R) essentially eliminates 
all hadronic contributions except that of the ground state so 
that

( ) ( ) ( )2

2 2
0,

Q

R

Am
P m dt P t R t Iλ ρ+ + = =∫  (30)

Another equation is obtained from the First moment

( ) ( ) ( )2

2 2 2 ,
Q

R

A Im
m P m dt t P t R t Iλ ρ+ + + = =∫

R is chosen in the stability region of the integrals 0I and 1I  
for cλ . These integrals turn out to be very at functions of t 

which obtain a maximum between 4.52 and 25 cm . The result is

( )2.10 exp.2.23
b

m GeV GeVΛ =  (31)

( )5.92 exp.5.62
b

m GeV GeVΛ =  (32)

Using B(t)P (t, R) yields practically identical results.
 

We now proceed to calculate m± independently. Because b 
and c quarks are heavy ( )0Π  is given by its QCD expression 
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which yields an additional sum rule 

( ) ( ) ( )2

2
2

12 ,
Q

R

Im

dtP m P t R t I
tm

λ
ρ+

+ Λ −
+

= =∫  (33)

This implies
01

0 1

II
I I−

=

 from which we can determine m+. The result is

( ) ( )' 2.51 0.03 exp.2.58
c

m GeV GeV
Λ
= ±  (34)

( ) ( )' 5.87 0.14 exp.5.91
b

m GeV GeV
Λ
= ±  (35)

The errors are estimated by varying R by 10%.
 

Finally for the Ξ  baryon '2468 25801 1 1 1, , ,
5797 59352 2 2 2Q Q

+ +      
Ξ Ξ               

 

the function a(t) in Equation 29 picks up an additional term 
proportional to the strange quark mass ms 

( )
42

4 2

24 1
3

Qs

Q

mm ss qq
a t

m t
π  −

∆ = −  
 

 (36)

 The calculation proceeds as before, giving

( )2.05 exp.2.468
c

m GeV GeVΞ =

( )5.40 exp.5.79
b

m GeV GeVΞ =

( )' 2.46 exp.2.58
c

m GeV GeV
Ξ
=

( )' 5.87 exp.5.935
b

m GeV GeV
Ξ
=

Conclusion

We have calculated the masses of the baryon recurrences 
with a new variant of QCD finite energy sum rules. The only 
free parameter of the sum rules, the radius of the circle in 
the complex t-plane, is fixed by the requirement of stability. 
The method works well for all similar systems such as the 
vector resonances. The main source of error is the zero 
width approximation for the resonances. We have estimated 
this error by allowing the radius entering the sum rule to 
vary by ±10%. Order αs corrections are included, order 2

sα are calculated and found to be negligible. The sum rule 
predictions are compared with the experimental numbers 
and agreement within the expected accuracy is found. It can 
be concluded that QCD is applicable to single resonances and 
their recurrences.
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