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Abstract

The numerical technique of Poincare surface of sections is used to create the surface of sections and to investigate the stability 
of the phase plane in various systems. This includes investigating the dependence of mass ratio and amplitude of stability 
areas in the Sun-Jupiter, Sun-Mercury, Sun-Io, and Sun-Uranus systems on the Jacobi constant. The amplitude of the stability 
areas diminishes with decreasing mass ratio. The phase plane structure differs for smaller mass ratios than it does for larger 
mass ratios.
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Abbreviations

PSS: Poincaré Surface Section; KAM: Kolmogorov–Arnold–
Moser.

Introduction

Poincaré surface of section (PSS) or simply surface of 
section is one of the fundamental and most visually exciting 
methods of evaluating the qualitative nature of a nonlinear 
dynamical system. The PSS method is a simple, yet effective 
technique that can display the qualitative nature of a 
dynamical system in a single diagram. This technique presents 
three essential features: The dimension reduction, global 
dynamics, and conceptual clarity. The use of PSS removes at 
least one variable in the dynamical system, resulting in the 
investigations and analysis of a lower–dimensional system. 

Poincaré surface section (PSS) technique given by 
Poincaré H [1] is a widely used technique for analyzing 
periodic and quasi–periodic orbits in a qualitative way. 
Murray CD, et al. [2] has given a detailed analysis of periodic 
orbits using PSS. Chaotic behaviour of bodies can also 

be studied using PSS, Liapunov characteristic numbers, 
Fourier transform techniques and numerical irreversibility 
technique. The set of stable periodic and quasi–periodic 
trajectories define regions of regular motion or stability 
islands that spread in a chaotic sea made up of trajectories 
with high sensitivity with respect to the initial condition. 

As per Kolmogorov–Arnold–Moser (KAM) theory, each 
point of PSS represents a periodic orbit in the rotating frame, 
and the closed curves or islands around the point correspond 
to the quasi–periodic orbits. 

Boucher K [3] demonstrates some of the aspects of chaos 
displaced by three-body problem, a circular Poincare map 
and divergent solutions as well as explores how increasing 
Jupiter’s mass affects the Earth’s motion. Kolmen E, et al. [4] 
has employed multiple PSS method to find quasi–periodic 
orbits around the libration points L1 and L2 in the Sun–Earth 
system.

Beevi SA, et al. [5] has also studied PSS for Saturn–Titan 
system for periodic orbits, quasi–periodic orbits and chaotic 
orbits. Nishanth P, et al. [6] studied the interior resonance 
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periodic orbits around the Sun in the Sun-Jupiter PRTBP 
using the method of PSS. Kumar P, et al. [7] have used PSS 
technique to find the effect of solar radiation pressure of 
Sun on resonant periodic orbits in the frame work of planar 
circular restricted three body problem. Pathak N, et al. [8] 
explored the first-order exterior resonant orbits and the 
first, third, and fifth-order interior resonant periodic orbits 
within the setting of the perturbed photo-gravitational 
model. Kumar P, et al. [9] investigated the periodic orbits 
of smaller and larger primaries in the Sun-Jupiter and Sun-
Earth systems, and discovered that the radiation force from 
the larger primary has a significant impact on eccentricity, 
orbit shape, size, and position in phase space.

The Equations of Motion

Consider the more massive primary of mass is m1 and m2 
is the mass of the smaller primary. These two masses have 

circular orbits about their common center of mass in a plane 
under the influence of their mutual gravitational attraction. A 
third body (attracted by the previous two but not influencing 
their motion) moves in the plane of primaries. To obtain 
the equations of motion for the third body, we choose XY as 
the sidereal frame and xy as the synodic frame. Let the co-
ordinates of m1, m2 and m in the sidereal frame be (X1, Y1), 
(X2, Y2) and (X, Y), respectively, and that in the synodic frame 
be (x1, y1), (x2, y2) and (x, y), respectively as shown in Figure 
1. To non-dimensionalise the problem, take unit of mass the 
total of the masses of M1 and M2, unit of length the distance 
between the primaries. These units force a gravitational 
constant G = 1. The only parameter in the system is the mass 
parameter μ.

Figure 1: The sidereal XY and synodic xy coordinate frame of RTBP.

The transformation from synodic system (x, y) to sidereal 
system (X, Y) is given by

                             cos sin
sin cos

X x t y t
Y x t y t

= −
= +

                                             (7)

In the Sidereal Frame: 

                    ( ) 2 21Kinetic Energy
2

T X Y = + 
                           (8)

                   ( )
1 2

1Potential Energy V
r r
µ µ −

= − − 
 

                       (9)

where 𝑟1and 𝑟2 are the magnitudes of the position of the third 
body from the more massive primary and smaller primary, 
respectively.

The Lagrangian of the system is given as
•	 Lagrangian (L) = kinetic energy – potential energy
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•	 Lagrangian (L) = T-V

                         2 2

1 2

1 1
2

X Y
r r
µ µ − = + − −  

 

                             (10)

Using equation (1), we get 
    
              cos sin sin cos

sin cos cos sin
X x t x t y t y t
Y x t x t y t y t

= − − −

= + + −



 



 

                            (11)

                    ( ) ( )2 22 2X Y x y y x+ = − + 

 
                                      (12)

Equation (4) now take the form

       
    ( ) ( ) ( )2 2

1 2

1 1
2

Langrangian L x y y x
r r
µ µ − = − + + −    

 

       (13)

where 

                                       ( )22 2
1r x yµ= − +                                    (14)

                                      ( )22 2
2 1r x yµ= + − +                                (15)

Differentiating 𝑟1 and 𝑟2 with respect to x and y, we get 

                

                                       
1

1

1

1

r x
x r
r y
y r

µ∂ −
=

∂
∂

=
∂

                                              (16)

                          
                                    

2

2

2

2

1r x
x r
r y
x r

µ∂ + −
=

∂
∂

=
∂

                                            (17)

Lagrange Equations:

                              0d L L
dt x x

∂ ∂  − = ∂ ∂ 
                                             (18)

                             0d L L
dt y y
 ∂ ∂

− = ∂ ∂ 
                                              (19)

where

L x y
x
∂

= −
∂





 

L y x
y
∂

= +
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( )( ) ( )
3 3

1 2

1 1x xL y x
x r r

µ µ µ
µ

− − + −∂
= + − −

∂


( )
3 3

1 2

1 yL yx y
x r r

µ
µ

−∂
= − + − −

∂


Lagrange equation corresponding to equation (18) is

[ ] ( )( ) ( )
3 3

1 2

1 1
0

x xd x y y x
dt r r

µ µ µ
µ

− − + − 
− − + − − = 

 
 

       ( )( ) ( )
3 3

1 2

1 1
2

x x
x y x

r r
µ µ µ

µ
− − + − 

− = − − 
 

 

                  (20)

Let

        ( )2 2

1 2

1 1
2

x y
r r
µ µ −

Ω = + + + 
 

                                           (21)

Equation (14) can be written as 

                                          2x y
n

∂Ω
− =

∂
                                            (22)

Lagrange equation corresponding to equation (19) is

[ ] ( )
3 3

1 2

1
0

yd yy x x y
dt r r

µ
µ

− 
+ + − + − − = 

 
 

( )
3 3

1 2

1
2

y yy x y
r r
µ

µ
− 

+ = − − 
 

 

                              2y x
y

∂Ω
+ =

∂
 

                                                      (23)

Jacobi Integral
Multiplying equation (16) by x  and equation (17) by y , we 
get

                                    2xx yx x
x

∂Ω
− =

∂
   

                                       (24)
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                                  2yy xy y
y

∂Ω
− =

∂
  

                                           (25)

Adding equations (18) and (19), we get

                       x yxx yy
t x t y
∂ ∂Ω ∂ ∂Ω

+ = +
∂ ∂ ∂ ∂

                                       (26)

Integrating equation (20), we get

2 2
1

1 1
2 2

x y C+ = Ω+ 

 

                                    2 2 2x y C+ = Ω+ 
                                       (27)

This is Jacobian integral. It will represent all possible 
motion for different values of Jacobi constant C.

Poincare Surface of Sections for Different 
Systems

The PSS method is a simple, yet effective technique that 
can display the qualitative nature of a dynamical system in 
a single diagram. A surface of section is found by viewing 
the trajectory in a stroboscopic manner. A great number of 
trajectories are to be computed for this technique [2]. In 

this technique, the equations of motion (Eqn 22) and (Eqn 
23) in chapter 1 were integrated using fourth-order Runge-
Kutta-Gill method with integration step size ∆t of 0.0005. 
The initial conditions were selected along the x-axis and the 
magnitude of the velocity vector was determined from its 
functional dependence on the Jacobi constant. The surface 
of section technique is good at determining the regular or 
chaotic nature of the trajectory. If there are smooth, well 
defined islands, then the trajectory is likely to be regular 
and the islands correspond to oscillation around a periodic 
orbit. The largest of the quasi-periodic orbits corresponds to 
the maximum amplitude of oscillation around the periodic 
one. The regular regions of a PSS are defined by a periodic 
orbit involved by quasi-periodic orbits and are interpreted 
as regions of stability in the sense that outside them the 
motion is certainly unstable and inside them the motion is 
in general regular. The maximum amplitude of oscillation 
is used as a parameter to measure the degree of stability of 
a periodic orbit with respect to the region around it in the 
phase space. Any fuzzy distribution of points in the surface 
of section implies that the trajectory is chaotic and within 
the mostly-chaotic regions, there are small regions of regular 
behavior, such as the region of interest indicated by the red 
circle as shown in Figure 2.1. Additionally, note that certain 
areas of the map display appear completely blank. No map 
returns exist in these areas because physical trajectories are 
not possible in these regions of the phase space.
 

Figure 2.1: PSS corresponding to Sun-Jupiter system for C = 2.99.

To study the dependence of Jacobi constant and mass 
ratio for different systems on the stability regions, PSS at C = 
2.9 and 3.0 are considered. Figures 2.2-2.9 shows the nature 

of phase plane corresponding to the decreasing order of mass 
ratio from the Sun- Jupiter to the Sun- Mercury system. The 
PSS of Sun-Jupiter system with mass ratio 0.0009537284, 
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being the highest among the systems is generated for Jacobi 
constant C = 2.9 shown in Figure 2.2. In case of the fuzzy 
distribution of points, the region x = 0.55 to 0.65 is less for 
C = 2.9 and is more for C = 3.0. The stability region from x 
= 0.6 and 0.75 corresponding to the Jacobi constant C = 2.9 
contain a number of invariant curves and with increase in the 
value of C from 2.9 to 3.0, this stability region disappeared. 
The stability region at x = 0.27 for C = 2.9 correspond to the 
periodic orbit around the Sun and as C increases from 2.9 to 
3.0, this stability region moves towards the Jupiter.

The phase planes corresponding to the Sun-Uranus 
system given in Figures 2.2 & 2.3 show the number of 
invariant curves is less in each stability region. In case of the 
fuzzy distribution of points, it is more in the region from x 
= 0.0 to x = 0.20 for C = 2.9. The phase plots show that the 
stability region moves towards the right as C increases from 
2.9 to 3.0. Chains of several resonant islands are identified 
after x = 0.75 for C = 2.9 and as C increases to 3.0, the size of 

this resonant islands decreased. 

The phase planes corresponding to the Jupiter-Io 
system are given in Figures 2.6 & 2.7. The phase plots show 
a number of islands with different size and shape and having 
comparatively small amplitudes with respect to the Sun-
Jupiter system for Jacobi constant C = 2.9. In case of the fuzzy 
distribution of points, it is less in the region from x = 0.3 to x 
= 0.70 for C = 2.9 and is more for C = 3.0. Empty region is seen 
from x = 0.7 onwards, when C is increased from 2.9 to 3.0. 

Figure 2.8 gives the phase plane corresponding to the Sun-
Mercury system for C = 2.9. Fuzzy distribution of points is 
more in the region from x = 0.0 to x = 0.6 and number of 
islands are less in the phase plane. As C increases to 3.0, fuzzy 
distribution of points increased after x = 0.7. The stability 
regions after x = 0.25 move towards the Jupiter as C increases 
from 2.9 to 3.0.

PSS for the Sun-Jupiter System

                            

Figure 2.2: PSS for C = 2.9.                                                                                   Figure 2.3: PSS for C = 3.0.
 

PSS for the Sun-Uranus System

                                            

Figure 2.4: PSS for C = 2.9.                                                                         Figure 2.5: PSS for C = 3.0.
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PSS for the Jupiter-Io System

                                 

Figure 2.6: PSS for C = 2.9.                                                                               Figure 2.7: PSS for C = 3.0.

PSS for the Sun-Mercury System

                                

Figure 2.8: PSS for C = 2.9.                                                                              Figure 2.9: PSS for C = 3.0.

Conclusions

The numerical technique of Poincaré surface of sections 
is used to generate PSS and to study the location and 
stability of phase plane in various systems. The phase plane 
corresponding to the Jacobi constant at C = 2.9 and 3.0 in 
descending order of mass ratio are presented. As mass ratio 
decreases, the amplitude of the stability regions decreases. 
For smaller mass ratios, the structure of the phase plane is 
in a different manner than that of the higher mass ratios. The 
stability regions move towards the smaller as C increases 
from 2.9 to 3.0.
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