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Abstract 

Stripe rust caused by Puccinia striiformis f.sp. tritici is one of the major constraints of wheat production worldwide. The 

most recent epidemics was occurred in 2010 in major wheat growing regions of central, west Asia, north and sub-

Saharan Africa causing significant yield losses because of breakdown of resistance in predominantly cultivated wheat 

varieties (e.g. Kubsa/Attila and Galama in Ethiopia and Cham-8 in Syria). The major cause might be the narrow genetic 

base on which the breeding for resistance has been founded. Many control measures have been used to minimize the 

losses incurred by yellow rust but use of resistant cultivars remains the most economical, efficient and environment and 

farmer friendly strategy. To broaden the genetic basis of wheat cultivars, it is important to collect, evaluate and document 

new source of resistance genes from wild relatives of wheat including Triticum and Aegilops species. Synthetic hexaploid 

wheat (SHW) is a valuable genetic resource for resistance to a range of biotic stresses. A total of 653 SHWs derived from 

Aegilops tauschii and Triticum turgidum subsp. durum were evaluated for resistance to yellow rust in Meraro and 

Kulumsa, Ethiopia, at the adult plant growth stage. Of these, 644 entries were further tested on wheat cultivars carrying 

Yr2, Yr6, Yr7, Yr9, YrA, Yr25 and Yr27 against stripe rust isolates virulent on these genes at the seedling growth stage of 

116 exhibited resistant to moderately resistant reaction under field conditions in both locations. Of these, 40 and 76 

SHWs showed susceptible and resistant reactions at the seedling stage, respectively. The resistant SHWs identified could 

be useful in broadening the genetic bases of stripe resistance and further characterized to uncover potentially new 

resistance gene(s) in SHWs effective against prevalent races currently attacking wheat in Ethiopia and other stripe rust 

countries in the region. 
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Introduction 

Stripe (yellow) rust caused by Puccinia striiformis f.sp. 
tritici, is one of the major diseases of wheat in temperate 
regions as well as in the highlands of the tropics and 
subtropics. It is reported to be one of the major wheat 
diseases in Ethiopia, Kenya, Tanzania and Uganda, Syria 
and Lebanon, and Yemen [1-5]. This is accentuated by the 
re-occurring breakdown in resistance of genes conferring 
resistance to prevailing races of the pathogen in major 
wheat growing regions of the world. Stripe rust infects 
leaves, leaf sheath and spikes of a wheat plant, and 
infection of spikes at a higher altitude often leads to 
significant yield losses including at higher altitudes 
regions of Ethiopia. In Ethiopia, the yield loss due to stripe 
rust could be as high as 96% depending on the 
susceptibility of the host and environmental conditions 
[6]. On average, a yield loss in the most recent outbreaks 
in Ethiopia is estimated at 30-40%. 

 
New races may develop through mutation or 

recombination of nuclei via a para-sexual process [7]. The 
fungus was considered to have only a hemi-form of life 
cycle comprising uredial and telial states, but recently 
Berberis sp. has been reported as an alternate host, and 
most likely played an active role in generating new races 
in Pst as well. In earlier studies, the stripe rust races 
identified in East African were found to be virulent on 
most of the known seedling resistance genes [3,8]. The 
overlapping and or continues planting dates and 
favorable environmental conditions present in different 
eco-zones as well as the presence of volunteers in wheat 
fields provide continuous sources of inoculums within or 
between countries in East Africa. Further, the mutation 
rate of the pathogen could be high in the higher elevations 
probably due to intensive UV light. Previous studies 
indicated that the mutability of yellow rust isolates 
increased when exposed to UV light [9].  

 
Due to similarities in the distribution of cereal rust 

races among the East African countries, a common 
epidemiological zone was proposed [10,11]. Rust spores 
are carried by wind among the East African countries and 
the Middle East [12]. The stripe rust virulence for Yr9 
detected in Kenya in 1986 took 10-12 years to reach 
Southeast Asia. Similarly, the yellow rust virulence on cv. 
Attila ’S’ was detected in Uganda in 1994, and four years 
later was detected in Ethiopia in 1998 [13]. Recently, 
similar race virulent on Atilla “S” has been detected in 
Syria, North Africa and other Middle east [14].  

 

Wellings provided a historical review of the major stripe 
rust epidemics including the extent of severity and losses 
[15]. It continues to pose a major threat to wheat 
production and food security in many parts of the world. 
In 2010, 2014 and 2015 stripe rust outbreaks occurred in 
Ethiopia most of the high yielding bread wheat cultivars 
succumbed to stripe rust. To cope with the ever-changing 
races, the resistance of wheat cultivars should be 
broadened and diversified. The most recent cultivated 
wheat varieties in CWANA including Ethiopia are 
susceptible to stripe rust. In the absence of resistance in 
cultivated wheat varieties new sources are sought from 
related species [16]. 

 
Significant genetic diversity for a wide range of biotic 

stresses has been reported in synthetic hexaploid wheat 
and their derived wheat lines including stripe rust [17-
20]. The diploid ‘goat grass’, Aegilops tauschii (Coss.) 
Schmal. (= Aegilops squarrosa L., syn. T. tauschii Coss.) 
(DD, 2n=2x=14) as well as the tetraploid, Triticum 
turgidum (2n=4x=28, AABB) species has been reported to 
be valuable sources of resistance to several pests and 
diseases [21-23]. There are several reports on techniques 
used to transfer rust resistance from putative progenitors 
into bread wheat [16]. The production of amphiploids, so 
called synthetic hexaploid wheat, from durum wheat, T. 
durum and Ae. tauschii and their subsequent crossing 
with bread wheat promotes full transfer of genetic 
material from both parents [24-26]. Despite the potential 
rust resistance sources in the wild progenitors of common 
wheat, relatively few stripe rust resistance genes have 
been identified and catalogued from these [27,28]. The 
yellow rust genes, Yr8, Yr15, Yr17, Yr28 and Yr36 are the 
only genes known to originate from wild progenitors of 
wheat such as Aegilops comosa, wild emmer wheat, Ae. 
ventricosa, Ae. tauschii W-219, Turgidum ssp. 
diccocoides, and Ae. variabilis [29-34]. This implies that 
there exist untapped genetic resources, which could be 
useful to broaden the resistance of the currently grown 
bread wheat cultivars. It is thus essential to identify 
additional sources of resistance. 

 
The objective of this study was to identify stripe rust 

resistance in synthetic hexaploid wheat derived from 
different Ae. tauschii and T. durum crosses to the 
prevailing races of yellow rust races in Ethiopia which 
could be used in breeding to improve YR resistance in 
elite locally adapted wheat cultivars. 
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Materials and methods  

Seedling Tests 

A total of 644 SHWs derived Ae. tauschii and Triticum 
durum were evaluated for seedling response in Ethiopia 
in 2013-14. The SHWs genotypes are listed in Table 1 (see 
Supplement Table 1). Seedling assessment was carried 
out at ICARDA according to standard procedure using a 
local race of Pst virulent for Yr2, Yr6, Yr7, Yr8, Yr9, YrA, 
Yr25, Yr27, and YrSd genes [27]. Seedlings were grown at 
20-25°C in a greenhouse. The 9-day old seedlings were 
inoculated using fresh urediniospores suspended in 
Saltrol 170®, followed by incubation at 10°C and relative 
humidity close to 100% for 24 hours. The seedlings were 
then transferred to a glasshouse at 18°C. Infection types 
were recorded 15 and 17 days after inoculation using 0-4 
scale [27]. Infection types 0; (fleck), 1, and 2 were 
considered as resistant (low infection types; LIT) and 3 to 
4 were considered as susceptible (high infection types; 
HIT). In all seedling assessments the susceptible variety 
Morocco was used as susceptible check.  

 

Field Adult-Plant Screening 

A total of 653 SWHs (see Supplement Table 1) were 
evaluated against stripe rust at adult plant growth stage 
at two locations in Ethiopia namely, Meraro (extreme 
highland, ca. 2920 masl) and Kulumsa (mid altitude, ca. 
2230 masl). Each entry was planted in two rows of 1-
meter length and 30 cm row space. Artificial inoculation 
was carried out three times during seedling (2 leaf stage), 
tillering and booting stages using the same isolate used 
for seedling test. Meraro is a major hot spot site for stripe 
rust development and is a designated stripe rust 
screening site in Ethiopia. Fertilizer and other agronomic 
practices were applied according to the recommendation 
for each location.  

 
The field responses were recorded according to Roelfs 

et al for main rust infection types (R, MR, MS and S) and 
for disease severity (0-100%) according to modified 
Cobb’s scale when field response of the susceptible check 
Morocco reached to 100S [35,36]. Field scoring was 
recorded three times at early booting, flag leaf, and 
heading stages, final scoring on flag leaf was used in data 
analysis. The field severity data were converted to 
coefficient of Infection (CI) by multiplying with a constant 
value of 0.2, 0.4, 0.6, 0.8, and 1 for R, MR, MS and S type 
reactions, respectively according Stubbs [11]. The SHWs 
were clustered into different resistance groups based on 
the CI values of the susceptible (Kubsa and Galama), 

Moderately susceptible (ET-13A2 and K6295-4A), and 
Resistant to Moderately Resistant cultivars (Meraro and 
Kenya Kudu); i.e., Resistant (CIs= 0-20), Moderately 
Resistant, (CIs=20-30), Moderately Susceptible, (CIs= 30-
40), Moderately Susceptible to Susceptible, (ICs= 40-60), 
and Susceptible (CIs= 60-100).  

 

Results  

The SHWs displayed a wide range of reaction to field 
infections in the trial sites. Frequency of adult-plant 
responses of SHWs to stripe rust at Kulumsa and Meraro 
is shown in Figure 1.  

 
 

 

Figure 1: The frequency of SHWs under different 
stripe rust severity classes evaluated at Kulumsa and 
Meraro, Ethiopia. 

 
 
Out of 653 SHW genotypes evaluated, 72.7%, 10.7% 

and 7.5% showed resistant, moderately resistant and 
moderately susceptible reactions, respectively at 
Kulumsa. At Meraro, 22.4%, 7.0% and 11.9% of the SWHs 
exhibited resistant, moderately resistant, and moderately 
susceptible reaction, respectively (Fig. 1). The highest 
incidence of stripe rust was observed at Meraro where 
the some of the dominant wheat varieties, such as Galama 
and Kubsa showed up to 100% severity. The severity of 
10MS was observed on the Kenyan old variety, Kenya 
Kudu and the severity of stripe rust on the two old 
Ethiopian wheat cultivars, K62954A and ET13-A2 was 20-
30% (data not presented). The reaction of SHWs to stripe 
rust was compared across locations. Out of 644 SHW 
genotypes common across the two locations in Ethiopia, 
about 12.2 %, 4.7 % and 10% exhibited resistant, 
moderately resistant, and moderately susceptible 
reaction, respectively (Figure 2).  
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Figure 2: The frequency of SHWs under different strip 
rust severity classes across locations in Ethiopia. 

 
 
The SHWs were compared for their reaction to stripe 

rust at seedling and adult plant growth stages. Out of 644 
SHWs tested at both growth stages, 116 exhibited 
resistances to moderately resistance reactions under field 
conditions across locations. Of these, 40 and 76 SHWs 
exhibited seedling susceptible and resistance reactions, 
respectively. This indicating the presence of adult plant 
and seedling resistances in the SHWs.  

 

Discussion  

There was an outbreak of stripe rust epidemics in 
Ethiopia and other CWANA countries 2010, 2014, 2015 
and 2016 season in almost all major wheat growing areas. 
Countries previously experienced yellow rust epidemics 
resulting in significant yield losses to farmers. In Ethiopia, 
stripe rust often cause substantial yield loss in higher 
elevation (>2400 masl), however, in 2010, 2014, and 
2015 the disease was wide spread reaching even to the 
lower elevations as a result of virulence to Yr27 present in 
the most widely grown cultivar, ‘Kubsa’. Current 
management strategies to reduce the impact of yellow 
rust incidence include chemical control and use of 
resistance cultivars. In countries such as Ethiopia where 
Yr resistance breakdown is frequent, chemical control is 
not sustainable due to costs and the risk to environment. 
It is imperative to broaden the genetic base of resistance 
by incorporating both major and minor genes in locally 
adapted wheat varieties. The main objective of this study 
was to identify SHWs that possess resistance to stripe 
rust, which could then be used for crosses with adapted 
wheat cultivars to develop resistant varieties.  

 

Previous studies have evaluated collections of SHW for 
resistance to yellow rust [17,18,37]. In the current study, 
we evaluated a relatively large number of SHWs aimed at 
identifying resistance to Yr27 virulent race that 
devastated wheat crops in Ethiopia. Screening of 644 
SHW lines in Ethiopia resulted in the identification of a 
considerable number of lines that exhibit varying degrees 
of resistance to prevailing yellow rust isolates and/or 
races in Ethiopia virulent to Yr27, the gene present in the 
mega-cultivars Kubsa and Glama that occupies large 
wheat acreages in the country. SHWs classified as 
exhibiting resistant and moderately resistant phenotypes 
represents collectively 29% and 84% in Meraro and 
Kulumsa, Ethiopia respectively. Some of the SHW lines 
showed field resistance under field conditions at Meraro 
and Kulumsa, Ethiopia. This suggests that the resistance 
effective to field isolates in the highland and lowlands of 
Ethiopia, also confers resistance to many isolates in the 
region. Additionally, this may imply that these SHW 
possess multiple resistance genes that confer resistance 
to a broad range of isolates. Ogbonnaya, et al. reported the 
identification of SHW that confer multiple disease 
resistance including rusts [20]. This is also consistent 
with previous studies which reported SHWs to be a 
reservoir of useful genes for disease resistance in wheat 
[38-40]  

 
With the frequent breakdown of resistance in wheat 

cultivars possessing major gene resistance to stripe rust, 
it has been proposed that the use and accumulation of 
durable rust resistance will improve the shelf-life of 
resistance genes and as such durable. Rust resistance 
genes in wheat fall under two broad categories and are 
referred to as seedling and adult plant resistance (APR) 
genes. Seedling resistance genes are detected during both 
the seedling and adult plant stages and as such constitute 
an all stage resistance phenotype. APR is commonly 
detected at the post-seedling stage and often as field 
resistance, although some APR genes can be induced to 
express in seedlings by varying the growth temperature 
and light conditions (reference for example Lr24/Yr18). A 
large proportion of seedling resistance genes exhibit 
phenotypes of major effect and with varying infection 
types whereas most of the APR genes are partial in effect 
with varying levels of disease severity [41]. Lines that 
possess durable rust resistance have been described as 
those that are susceptible at the seedling stage but 
resistant at the adult plant stage [42,43]. About 40% the 
SHW evaluated displayed Adult plant resistance (APR) 
phenotype at the two sites, Meraro and Kulumsa in 
Ethiopia. These constitute valuable genetic resources that 
could be used in wheat breeding programs. 
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Of the more than 70 yellow rust resistance genes/QTL 

designated to date, only a few of them are classified as 
adult-plant resistance to stripe rust of which very limited 
number such as Lr34/Yr18 and Lr46/Yr29 are well 
characterized and cloned. This raises some questions, do 
the SHWs with APR phenotypes possess the same gene as 
those currently available in elite cultivars. Therefore, 
further studies would be needed to determine if the 
potentially new APR genes identified in this study are the 
same genes to those previously identified. The availability 
of molecular markers linked to some of the designated 
APR genes would facilitate the screening of the SHWs to 
determine if these are different. If so, the SHW provide 
potentially new sources of APR genes that could be used 
for crosses in developing locally adapted cultivars 
resistant to prevailing Yr isolates/or races virulent to 
Yr27. 
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