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Abstract

Soil structural status in relation to soil pore size distribution, soil water retention, and plant available water (PAW) influence 
crop plant growth. Also, soil organic carbon content (SOC) usually influence soil structural stability, soil pore size and may affect 
crop growth, especially in arid/semi-arid regions with low SOC. Our studies focused on soil structure under clay dispersion 
and conventional and no-tillage systems included cultivation of cover crop in arid/semi-arid region of north-eastern Iran, in 
2020 and 2022, respectively. According to our findings, PAW directly depended on soil pore size distribution, the more micro-
pores the more water retention. Consequently, smaller soil pores due to clay dispersion improved water retention in soils and 
crop growth increased with enhancing PAW. SOC usually is low in arid/semi-arid regions of the world, therefore, addition of 
soil organic matter by crop residue retention may help in improving soil condition. Based on our results, cover crop residue 
retention in no-till system increased SOC, and SOC positively influenced soil functions such as soil structural stability, soil pore 
size (using X-ray images), and root growth. Therefore, soil pore size distribution as influenced by soil structural status could 
be considered as a principal factor in crop growth in arid/semi-arid region of north-eastern Iran.
   
Keywords: Soil Pore Space; Water Retention; Plant Available Water; Dispersible Clay; Soil Organic Matter; Soil Structure; 
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Abbreviations

PAW: Plant Available Water; SOC: Soil Organic Carbon.

Introduction

The soil pore system influences many soil functions and 
properties Shein EV, et al. [1], for example it has a major effect 
on soil physical properties and soil health, and controls water 
movement and solute transport Guo Y, et al. [2]. Changes in 

the soil pore size distribution, due to clay dispersion, soil 
compaction and swelling etc., may affect soil available water. 
Soil water content could also affect soil physical, chemical 
and biological properties and can alter nutrients uptake by 
plants and finally crop growth. It was also reported that soil 
water retention increased at range of high matric suctions, 
where smaller pores are responsible for water retention 
Asgarzadeh H, et al. [3]. There are different methods to 
define the soil available water for plants. The conventional 
plant available water (PAW) has been defined as difference 
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between water contents at field capacity (FC) and permanent 
wilting point (PWP) (PAW = FC-PWP), which was used for 
years Kirkham MB [4]. Increase in the water retention might 
increase PAW, where FC and PWP are influenced by smaller 
soil pores, as a consequence crop growth condition will be 
affected by soil available water Farahani E, et al. [5]. Clay 
dispersion has been considered as the main process which 
can cause plugging of soil pores in salt affected soils Emami 
H, et al. [6,7], therefore clay dispersion was reported mostly 
as a destructive phenomenon in literature. Dispersion of 
clay particles typically leads to unsuitable conditions for 
root growth, decreases water infiltration rate, increases risk 
of run-off, flooding and erosion, and may cause soil surface 
crusting Dexter AR, et al. [8,9]. Problems of dispersive soils 
could be because of soil stability disruption which restricts 
water infiltration [10], enhances vulnerability of soil against 
water erosion Shahab H, et al. [11], and causes nutrients loss 
by overland flow Gholoubi A, et al. [12]. However, depending 
on how dispersed clay particles influence soil structure and 
pore size distribution, different aspect of clay dispersion role 
on soil functions might be expected.

Advanced agricultural practices to manage soil organic 
carbon (SOC) could improve soil ecosystem services. 
Iran mostly includes arid and semiarid regions with low 
SOC content, therefore, SOC management is essential for 
sustainable agriculture in Iran. Excessive tillage practices 
usually enhance SOC decomposition and soil degradation, 
therefore reduce soil quality Chenu C, et al. [13,14]. 
However, conservation tillage systems increase SOC content 
Bhattacharyya R, et al. [15], improve soil aggregation 
Martínez E, et al. [16] and may increase total porosity and 
water retention Bhattacharyya R, et al. [17]. Conservation 
tillage with increasing SOC protects the soil from degradation 
and thereby develops soil quality Lampurlanés J, et al. [18]. 
Economic and environmental benefits of reduced tillage and 
no-till are driving a fast adoption of conservation tillage, 
around the world Liu K, et al. [19]. No-till systems consisted 
of cover crops cultivation and crop residue retention created 

continuous macro-pores and increased air-filled porosity at 
low matric suctions due to accumulation of SOC and resulted 
in better plant growth parameters Abdollahi L, et al. [20].

Because of the importance of pore size distribution in 
soil functions, we focused on soil pore size determination 
and crop growth assessment in a dispersive soil and in two 
tillage systems in northeastern Iran in our study. Therefore, 
quantitative determination of soil pore size which is typically 
based on the analysis of soil water retention data has been 
studied. This method creates a relationship between volume 
of water discharged at a given matric suction and pore size, 
however does not estimate shape and orientation of soil 
pores [1]. X-ray computed tomography (X-ray CT Scan) as a 
qualitative 3-dimensional analysis of internal soil structure 
and a suitable noninvasive technique to evaluate changes 
in soil porous system Garbout A, et al. [21,22] has also been 
used in this study. In addition, crop growth condition was 
investigated directly by shoot and root growth measurements 
in our first work (2020) and indirectly using prediction of 
root growth condition by SOC content and root residue 
determination in our second study (2022).

Soil Pore Size Distribution in Connection 
with PAW, SOC and Crop Growth

The Experiment of Impact of Soil Pore Size on 
PAW and Crop Growth in a Dispersive Soil

Measurements: According to Farahani et al. [5], soil 
composite samples were collected from the soil surface (0–
0.3 m depth) of an agricultural loamy soil (the original soil), 
which is located at Ferdowsi university of Mashhad campus, 
north-eastern Iran (Table 1). The experiment was performed 
as completely randomized design with three replications. 
The soil has been treated with monovalent cation of K, to 
project clay dispersion, from concentration of 13.6 to 27.2 
and 27.2 to 54.4 cmolc kg-1 in EC=3 and 6 dS m-1, respectively.

Clay 
(% by weight) Silt Sand OC %CaCO3

Ece 
(dS m-1) pHs K 

(mg kg-1) Na Ca Mg CEC 
(cmolc kg-1)

20.6 47.3 32.2 0.64 15.9 1.2 7.8 2.8 34.5 46.8 19.5 10.5

OC=organic carbon; ECe= electrical conductivity of saturated extract; pHs= pH of saturated paste; CEC= cation exchange capacity.
Table 1: Intrinsic Physical and Chemical Properties of the Original Soil.

The measurements were hereafter done on the treated 
soil samples. The soil water retention was determined on 
undisturbed soil cores (diameter: 3.5 cm; height: 4 cm) at 
matric suctions of 0, 50, 100, 300, 500, 1000 and 5000 hPa, 
using pressure plate apparatus. Then, the van Genuchten 
equation (Eq. (1)), see Van Genuchten MT [23], with the 

Mualem restriction (m = 1–1/n) was fitted to the measured 
data using the RETC software Genuchten MV, et al. [24]:

   

                   ( ) (
1 1

[1 )n n
s r hθ θ θ α

−
= − +                                           (1)
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where θs and θr are the saturated and residual water 
contents (cm3 cm−3), respectively, α is a scaling factor (hPa−1) 
and n is a shape parameter of the soil water retention curve.

The PAW was also calculated using soil water retention 
data and parameters by SAWCal (soil available water 
calculator) software Asgarzadeh H, et al. [25]. To determine 
soil pore size distribution the volumetric water content 
retained in soil at matric suctions up to 50 hPa was defined 
as macro-porosity, between 50–300 hPa and >300 hPa 
Marshall TJ [26] were considered as meso-porosity and 
micro-porosity, respectively.

To determine amount of dispersible clay in water in the 
soil samples, 20 g of the disturbed treated soil (< 2 mm) was 
placed in a 250-ml cylinder, and 200 ml of distilled water 
was added slowly down the sides of the cylinders to avoid 
soil disturbance Marchuk A, et al. [27]. After 12 h, dispersed 
particles were gently stirred into suspension and left to 
stand for 2 h. 10 ml suspension was taken from 10 cm depth, 
oven dried at 105 °C for 24 h, and dispersible clay in relation 
to total clay was determined [27].

To assess impact of PAW values on crop growth, maize 
was planted in the treated soils. NPK and micro fertilizers 
were also applied to prepare suitable condition for crop 
growth. Irrigation was done by weight change of the pots 
in relation to their initial weights using distilled water. At 
the end of maize vegetative growth, plants were harvested 
and shoot and root weights were measured to calculate 
shoot:root ratio per pot, as a well-known parameter to show 
rate of plant growth.

Data Interpretation: According to [5], adding monovalent 
cations (K) into the soils created clay dispersion in the treated 
samples, because monovalent cations may increase diffuse 
double layer (DDL) thickness of the clay particles and lead to 
clay dispersion. The differences between CEC of the original 
soil and the treated samples were not statistically significant, 
which means K ions were not fixed by clay layers and played a 
role in dispersion. The dispersible clay percentage increased 
significantly (p < 0.05) with increasing K concentration 
compared to the original soil (Figure 1). Also, clay dispersion 
at EC = 6 was lower than EC = 3 dS m−1, which primarily could 
be due to the higher electrolyte concentration that reduces 
dispersion Quirk JP, et al. [28].

Grey Symbols: EC=3 dS m-1; Black Symbols: EC=6 dS m-1; T1 to T6 Indicate the Treatments (Concentration Of 13.6 To 27.2 and 
27.2 To 54.4 cmolc kg-1 at two EC Levels) and Cont. is the Original Soil. Error Bars Indicate ± 1 Standard Error.
Figure 1: Percentage of Dispersible Clay as a Function of K Concentration.

The meso- and the micro-porosity increased significantly 
(p < 0.05) in most of the treated samples in comparison with 

the original soil at both EC (Figure 2), however the macro-
porosity did not differ significantly in the treated samples 
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compared to the original soil. Clay particle rearrangement 
causes aggregate destruction and reduces pore size, which 
is referred to as short-range migration of dispersed clay 
particles into the soil pores Chen Y, et al. [29]. In reference 
Marchuk A, et al. [30], they worked on changes of pore size 
distributions in a sandy loam soil contained monovalent 

cations (Na and K) using X-ray tomography, and found 
non-connected pores filled with dispersed clay particles. In 
reference Marchuk S, et al. [31], they studied two soils (sandy 
loam and clay) as influenced by K treatments and reported 
that large pores (17.4–69.2 μm) decreased with increase in 
K concentration, while small pores (0–17.4 μm) increased.

               
           

Grey Columns: EC=3 dS m-1; Black Columns: EC=6 dS m-1; T1 to T6 Indicate the Treatments (Concentration Of 13.6 to 27.2 and 
27.2 to 54.4 cmolc kg-1 at two EC Levels) and T0 is the Original Soil. In Each Chart Same Letters are Not Statistically Significant 
at P<0.05. Error Bars Indicate ± 1 Standard Error.
Figure 2: Values of Meso-Porosity and Micro-Porosity in the Treated Samples.
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Results of the fitted parameters of van Genuchten model, 
see [23], on water retention data demonstrated that PAW(FC-
PWP) increased with increasing K concentration, and PAW of 
the treated soils were larger than in the original soil at both 

EC levels (Table 2). This observation was because of clay 
dispersion impacts on soil structure, in particular on soil 
pore size, which discussed earlier. The maximum PAW were 
attributed to the highest K amounts at both EC (Table 2).

 
EC dS m-1 Treatments PAW (cm3 cm-3)

  Original soil 0.133B
3 t1 0.179AB
  t2 0.231A
  t3 0.191AB
  t4 0.206AB
  t5 0.171AB
  t6 0.253A
6 t1 0.182AB
  t2 0.168AB
  t3 0.183AB
  t4 0.171AB
  t5 0.208A
  t6 0.196AB

In each column same letters are not statistically significant at p<0.05.
Table 2: Values of PAW in the Treated Samples and the Original Soil.

Grey symbols: EC=3 dS m-1; black symbols: EC=6 dS m-1; t1 to t6 indicate the treatments (concentration of 13.6 to 27.2 and 27.2 
to 54.4 cmolc kg-1 at two EC levels) and Cont. is the original soil.
Figure 3: Relations between Amounts of PAW and Micro- and Meso-Porosity at Both EC.

The PAW and the meso- and micro-porosity positively 
related at both EC (Figure 3). As discussed earlier, the soil 
pore size became smaller in most of the treated samples due 
to clay dispersion, therefore increase in PAW with increasing 
the meso- and micro-porosity seems logical. Since smaller 

pores are responsible for water retention at matric suctions of 
100 and 15000 hPa (equivalent to FC and PWP, respectively), 
water contents at FC and PWP were effective on calculation of 
PAW in this study. The more water retention at FC and PWP, 
the more PAW amounts. In comparison with the original soil, 
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maximum increments in FC and PWP were observed in the 
treatments included highest K concentrations at both EC.

In reference Nang ND, et al. [32], they worked on 
changing PAW in a salt affected Australian soil, and found 
the highest PAW in the samples with maximum dispersible 
clay, and justified the shift toward smaller pores was a result 
of clay dispersion. Furthermore, in Zangiabadi M, et al. [33], 
they studied the effect of soil pore size distributions on 
PAW values in 30 different soils from northeastern Iran and 
demonstrated reduction of soil pores diameter resulted in 
increase of soil water retention and PAW. However, in Hardy 
SM [34], they studied sodic soils (with high ESP values), and 
reported that high concentration of Na led to reduction in 
PAW, it is in contrast to our findings. High amounts of ESP 
collapse soil structure and block the soil pores McMullen B 
[35], which results in PAW reduction.

The shoot:root ratio of maize, as an index of crop growth, 
enhanced significantly with increasing PAW at EC = 6 dS 
m-1 (shoot:root = 25.847 PAW - 1.3066, R² = 0.64, p=0.03), 
whereas no significant relationship was observed at EC = 
3 dS m-1. This indicated that crop growth conditions were 
improved in the treated soils at higher EC level. Generally, 
negative impacts of clay dispersion on soil structure have 
been reported in previous literature, however, in this 
study, a positive impact on plant available water and plant 
growth was found, because clay dispersion increased water 
retention. The effects of clay dispersion on soil functions 
are complicated and dependent on cation concentration 
Marchuk A, et al. [36], EC [28-36], soil texture Rengasamy P, 
et al. [37] and clay mineralogy Farahani E, et al. [38]. In our 
study, clay dispersion caused by cations and increased water 
retention and PAW. Because water retention was the physical 

plant growth limiting factor, plant growth conditions were 
improved, and plant growth increased by clay dispersion at 
EC = 6 dS m−1. However at EC = 3 dS m−1, according to root 
weight data (unpublished data) root development decreased 
due to the higher clay dispersion and soil hardening and 
therefore, plant growth did not increase although PAW 
increased. Consequently, as long as the dispersed clay does 
not increase resistance against root growth, the increase in 
water retention, due to change in soil pore size by migration 
of the dispersed clay particles, may positively influence 
physical crop growth conditions in arid/semi-arid regions of 
northeastern Iran.

The Experiment of Relationship between Soil 
Pore Size, SOC and Crop Growth in Two Tillage 
Systems

Measurements: According to Farahani et al. [39], plots of 
tillage systems (conventional and no-till), included wheat-
maize rotations and cover crop cultivation, were established 
in 2017 at the “Agricultural and Natural Resources Research 
Center”, northeastern Iran (Table 3). The initial SOC content 
was 0.36% in the studied soil, which is clearly low but looks 
typical in the arid/semiarid regions of Iran, since 61.6% 
of agricultural soils contain less than 1% SOC Moshiri F, et 
al. [40]. No-tillage (NT) included completely avoiding any 
tillage practice, and seed was sown with a no-till drill and 
normal row planters for wheat and maize, respectively. In 
conventional tillage (CT), tillage was done with mouldboard 
plow (to 25 cm depth), followed by tandem disking twice (to 
10 cm depth). Pneumatic precision seeders and row planters 
were used to grow maize and wheat, respectively.

Clay (%) Silt Sand CaCO3 SOC Ece (dS m-1) pHs

35.92 29.28 34.8 11.03 0.36 1.27 7.39

SOC=soil organic carbon; ECe= electrical conductivity of saturated extract; pHs= pH of saturated paste.
Table 3: Physical and Chemical Properties of the Initial Soil.

Details of crop and cover crop (clover) cultivation from 
the start of the experiment (2017) to sampling (2020) were 
as follows: wheat was cultivated and harvested in November 
2017 and June 2018, respectively. Clover was sown in July 
2018 using a wintersteiger drill in NT, and was harvested in 
May 2019 with a mower. Maize was grown and harvested 
in June and October 2019, respectively. Wheat in a rotation 
was planted and harvested in November 2019 and June 
2020, respectively. In CT treatments only stubble of the crop 
was left on the plots, while crop residues were retained 
and mixed with the soil surface in NT after clover harvest. 
Soil sampling was done in July 2020 (after wheat harvest) 

with two sampling depths (0–15 and 15–30 cm) and three 
replications in a randomized complete block design in both 
tillage systems.

Percentage of micro- and macro-aggregates (<250 and 
>250 μm, respectively), as influenced by SOC content, was 
determined with the 0.25 mm sieve. Air-dried aggregates 
were put on the sieve and shaken in dry condition and the 
amount of micro- and macro-aggregates was calculated as 
mass of aggregates that passed the sieve and the aggregates 
on the sieve, respectively, divided by total mass of the soil 
sample Totsche KU, et al. [41]. SOC content in the samples 
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were determined using wet oxidation method Walkley A, et 
al. [42]. Root growth condition has also been assessed by 
root residue evidence in the tillage plots.

To investigate soil pore system, 3-dimensional X-ray 
imaging was performed with a medical scanner (Planmeca 
Viso G7 - Helsinki, Finland). Three replicates for each soil 
depth (0–15 and 15–30 cm) of undisturbed core samples 
(with a diameter and height of 4.5 and 6.25 cm; 100 cm3) 
were scanned in air-dry condition. The voxel size was 75 μm, 
maximum X-ray energy of 100 kV and 100 mA was used to 
scan each soil core.

Data Interpretation: The SOC content after 3 years 
of establishment (2017–2020) increased significantly 
compared to the initial soil, however NT plots showed higher 
SOC content than CT (Figure 4). NT had 92% and 144% 
increase of SOC at 0–15 and 15–30 cm depth, respectively, 
in comparison with the initial soil (Tables 3 & Figure 4). 
Apparently in NT system, the amelioration of physical 
conditions encouraged root growth in the depth of 15–30 
cm, thus root residues content and SOC was increased at 
this depth after harvesting the plants. An increase of SOC 
by 28% in CT (0– 15 cm) compared to the initial soil can 
be attributed to the mixing crop root residues with the soil 
within the tillage layer of 25 cm. Although, in CT (15–30 cm) 
44% decrease in SOC was observed compared to the initial 
soil, possibly due to the decomposition of organic matter by 
tillage practices.

Figure 4: Percentage of SOC in NT and CT Treatments 
at Two Depths (0-15 and 15-30 cm). In Each Chart Same 
Letters are Not Statistically Significant at P<0.05. Error 
Bars Indicate ± 1 Standard Error.

The higher SOC content in NT compared to CT was mostly 
due to the cover crop (clover) cultivation and crop residues 

retention in NT system. Cover crops increase SOC content 
and improve soil properties, leading to more biomass carbon 
input and extending the advantages of conservation tillage. 
Seeding cover crops after wheat harvest enhanced SOC in a 
NT system with wheat–sorghum rotation in Kansas Blanco-
Canqui H, et al. [43]. Soils in arid/semiarid areas mostly 
contain low SOC contents, therefore clay particles can present 
great impact on soil structure and create organo-mineral 
complexes, which help with organic matter accumulation 
Levy GJ, et al. [44]. It was observed that soil structural 
stability correlated with clay content, and this relationship 
being stronger in clay contents of ≥35%. High structural 
stability indices has been reported in two soils contained 
38% and 45% clay and 46% and 30% sand, respectively. It 
means sand content will not influence soil stability if clay 
content is high enough to ameliorate structural stability [44]. 
Clay content of the studied soil was 36% (Table 3) and could 
increase the SOC content in NT, consisted of crop residues 
retention, compared to the initial soil. Higher clay contents 
in soils may cause more molecules of organic carbon to 
adsorb on clay particle surfaces and form more organo-
mineral complexes, which consequently can protect SOC 
from microbial and enzymatic decomposition and increase 
SOC storage Jagadamma S, et al. [45, 46].

SOC influences porosity and pore size distribution, for 
example, in Emerson WW, et al. [47], they found enhancement 
of pore size with increasing SOC percentage in two sandy 
and silty soils. It was demonstrated that greater SOC content 
increased soil physical quality indices, especially pore 
size distribution functions. Aggregate size could also be 
regarded as a structural stability index in soils, which may 
be influenced by SOC content Reynolds WD, et al. [48,49]. 
Trend of macro-aggregates changes among the treatments in 
NT and CT systems was similar to the SOC contents in our 
study, implying that NT (at both depths) with higher SOC had 
more macro-aggregates. The lowest percentage of macro-
aggregates also belonged to CT in depth of 15-30 cm, with the 
lowest SOC (Figure 4 & Table 4). In reference [43], they found 
that increasing SOC developed macro-aggregation, hence soil 
aggregate size can increase by 1.5 mm when SOC increases 
by 1%, and pore size between aggregates can also increase. A 
study in a semi-arid region of China compared conventional 
and conservation tillage and reported that macro-aggregates 
percentage increased by 41.2% and 56.6% for no-till system 
without and with crop residue retention, respectively Wu 
J, et al. [50]. They also mentioned that macro-aggregates 
are the major pools of SOC and total nitrogen. Therefore, it 
can be inferred from our results that the highest SOC in NT 
produced more macro-aggregates at both depths.
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Treatments and Depths micro-aggregates (<250 µm) % macro-aggregates (>250 μm) %
CT (0-15) 4.6b 95.4c

CT (15-30) 6.5a 93.5d
NT (0-15) 2.6c 97.4b

NT (15-30) 1.6d 98.5a

CT=conventional tillage; NT=no-tillage; Different letters were statistically different in p<0.05. 
Table 4: Mean Comparison of Percentages of Micro- and Macro-Aggregates of the Treatment Plots.

According to cross-sectional X-ray images of the soil 
pores (Figure 5), the core samples at depth of 0–15 cm had a 
lower soil pore volume than those at 15–30 cm in both tillage 
systems. Regardless of soil depth, CT had a higher total 
porosity compared to NT, which is due to ploughing the soil in 
CT system. Moreover, the highest total porosity was observed 
in CT (15–30), revealed that it had the lowest compaction 
(bulk density) among the treatments (values of bulk density 
in the treatments were not significantly different in this 
study, so not shown). In general, low soil porosity and high 
bulk density in a NT system can originate from the absence 
of soil disturbance Bescansa P, et al. [51-54]. The loose soil 
structure of ploughed horizons typically has an isotropic, 
well-connected pore system, whereas pores in unploughed 
soils may be more anisotropic and less connected Schlüter 
S, et al. [55]. Furthermore, in CT (0-15) moderate soil 
compaction caused by tillage machineries in soil surface, 
resulted in lower total porosity compared to the subsoil 
(Figure 5). The greater subsoil porosity in tillage systems 

could be attributed to soil moisture distribution during 
growing season in arid/semi-arid region of northeastern 
Iran. According to measurement of the in situ water content 
during the experiment, the surface soils had lower moisture 
than the subsoil in both tillage systems. This probably caused 
by high evaporation from the soil surface (0–15 cm depth) in 
spring and summer (corresponds to the most of vegetative 
and reproductive growth of winter wheat) in arid/semi-arid 
region of northeastern Iran. In reference Enkova LK, et al. 
[56], they studied three agricultural soils in western Slovakia 
(with different textures and SOC) and reported that the more 
soil moisture the more porosity. Moreover, the soil moisture 
distribution at different depths could potentially influence 
root growth. In Hodgkinson L, et al. [57] it was reported 
that root growth and development was higher under moist 
condition. Therefore, it can be assumed that there was 
less root growth and root canals at the depth of 0–15 cm 
compared to the depth of 15– 30 cm in our study.

(Dark areas = pores, grey areas = solids, white areas = gravels), CT: conventional tillage; NT: no-tillage.
Figure 5: X-Ray Computed Tomography Images of Soil Pores for the Treatments at Two Depths (0–15 and 15–30 cm).
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Root density could be a possible reason for the non-
significant differences in bulk density values in our study. 
Based on the visible big root canals in X-ray images in NT 
(15-30), it apparently had better plant growth and higher 
root density than CT. The cultivation of cover crop, more SOC, 
and therefore the stable aggregates increased root growth 
in NT system. Soil loosening through tillage practices in CT 
and root density and SOC in NT may therefore explain a non-
significant difference in bulk density in two tillage systems. 
Cover crops created continuous macro-pores and increased 
air-filled porosity at low matric suctions in a no-till system 
[25].

Conclusions

•	 In first part of our study, clay dispersion created 
short-range migration of dispersed clay particles into 
the large pores, as a result soil pore size distribution 
shifted towards smaller pores (meso- and micro-pores). 
Therefore, PAW increased by changing of soil pore size 
distribution, the more meso-/micro-pores, the more 
water retention.

•	 A positive impact of clay dispersion on PAW and plant 
growth was found in this study, because of increase 
in water retention. It revealed that depending on 
how dispersed clay particles influence soil structure 
especially pore size distribution, an improving role of 
clay dispersion on soil functions may be expected.

•	 In second part of our study, application of NT (included 
seeding clover (cover crop) along with retaining crop 
residues on the soil surface) maximized SOC to 144% 
compared to the initial soil and in turn resulted in the 
highest amount of macro-aggregates and pore diameter 
compared to CT.

•	 X-ray imaging provided a comprehensive view of the 
changes in soil structure due to tillage systems and 
proved the advantages of conservation tillage compared 
to conventional ploughing in the arid/semi-arid regions 
of Iran.

•	 Therefore, it can be concluded that NT system with cover 
crop cultivation and crop residue retention could be 
recommended in arid/semi-arid regions of northeastern 
Iran to enhance SOC content and consequently improve 
soil structure, increase aggregate and pore size and 
finally promote plant growth.

•	 According to our findings, soil pore size distribution 
as a soil physical attribute showed essential roles on 
plant growth through improving soil water retention 
and root growth condition in our first and second study, 
respectively. It was observed that the effect of soil pore 
size distribution was mostly physical without any proved 
microbial or biotic interaction, thus it can be concluded 
that soil pore size may have important and unique role 
on plant growth in arid/semi-arid regions of Iran.
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