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Abstract

In recent decades, soil degradation has increased dramatically on a global scale. It is urgently necessary to promote food security 
and lessen the effects of climate change by restoring and maintaining the health of our soils. Improvements in soil structure 
have been demonstrated to help mitigate the effects of soil degradation, which is a crucial feature that influences soil health 
that is becoming more widely acknowledged. So the use of technologies and methods are important in this context. Growing of 
legume crops in cropping system is an option. Legumes possess a unique attribute known as nitrogen fixation, which enables 
them to form symbiotic associations with nitrogen-fixing bacteria residing within specialized root structures called nodules. 
Through this remarkable process, atmospheric nitrogen is converted into a biologically available form, enriching the soil with 
this essential nutrient and reducing the dependence on synthetic nitrogen inputs and minimizing environmental degradation 
caused by excessive fertilizer usage. Furthermore, legumes actively participate in nutrient recycling, releasing essential 
elements within the soil. By absorbing nutrients from deep in the soil profile, legumes prevent leaching and subsequent loss 
of these valuable resources. In addition to their nutrient recycling power, legumes also play an important role in improving soil 
structure. Their extensive root systems penetrate deep into the soil, effectively breaking up compacted layers and enhancing 
water infiltration. In conclusion, recognizing and harnessing the potential of legumes can revolutionize farming practices, 
ensuring long-term soil fertility and productivity, environmental sustainability, and food security for generations to come.  
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Introduction

In intensive agriculture, farmers often use chemical 
fertilizers in excess amount to produce a tremendous yield in 
the short term Ahmadi AY, et al. [1], Bedoussac L, et al. [2], and 
progressive use of these fertilizers lead to nutrient imbalance 
which adversely affects soil health in the long term because 
of their susceptibility to losses through gaseous form and by 
leaching [3,4]. At the same time, it takes about 70 percent 

more food to feed the 11 billion inhabitants by the end 
21st century [5]. As a result, science and technologies must 
address these challenges. Among the many possibilities, a 
legume-based cultivation system is an option for responding 
in this context. 

Legumes belong to the Leguminosae or Fabaceae family 
and are well-known for their biological nitrogen fixation and 
nutritive values [6-8]. Legumes have a vital role in integrated 
soil fertility management because of their capability to fix 
atmospheric nitrogen (N2) in symbiosis with rhizobia species 
[9,10]. 
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They supply soil organic matter resources in the soil, thus 
improving soil physical, chemical and biological properties 
and crop yield [11,12]. Legumes increase microbial growth 
in soil for nutrients recycling [13]. 

The inclusion of legumes in the cropping system can 
increase carbon (C) stock [14,15]. Furthermore, legumes in 
the intercropping system can remain N stock for succeeding 
crops [16-18]. In addition to N and C, Phosphate-solubilizing 
bacteria with legumes can change organic P to inorganic P 
through the solubilization and mineralization processes [19].

Here are some studies about the importance of the 
legume–based cropping system which describes the 
positive role of legumes in crop yield. Yusuf AA, et al. [20], 
Kumar S, et al. [21] reported a higher yield of maize and 
high N uptake in legume-based cropping systems compared 
to sole cropping. Mupangwa W, et al. [22] found the highest 
yield of maize crop from 3307–3,576 kg ha-1 and 3,609 kg 
ha-1, respectively in the including of common bean and 
groundnut rotation. Legume-based cropping compared 
to mono-cropping makes the optimum resource of all 
nutrients for crop productivity [23,24]. For the efficient use 
of available natural resources, crop productivity per unit 
area, and minimizing the risk of crop failure, appropriate 
intercropping including legumes is very important [25]. 
Monoculture can cause a decrease in soil fertility and 
productivity, nutrient loss, weed and pest infestations, etc. 

eventually result in low yield [26,27].

The aims of this review are to describe the role and 
importance of legumes in human nutrition and livestock 
feeding and also their benefits for soil fertility and crop 
productivity through their inclusion in the cropping system. 
The positive effects of legumes on succeeding crops will also 
be described. 

Classification of Legumes

Legumes are the third-largest angiosperm family that 
contain more than 18,000 species [28,29]. Legumes seeds 
are surrounded by pods [28,30,31]. They are valuable 
sources of protein, minerals, and vitamins that are essential 
to human and animal nutrition. Legumes are also well-
known for improving crop yields and soil fertility through the 
BNF mechanism. According to their use and consumption, 
legumes are divided into four main categories: pulses, oil 
seed legumes, vegetable legumes, and forage legumes.

Pulses

Pulses are crops that are only cultivated for their dry 
grains/seeds. For instance, peas, beans, lentils, and chickpeas 
(Table 1). Around 72.3 million metric tons of pulses were 
produced between 2011 and 2013 on 80.3 million hectares 
of land worldwide, with dry beans coming in first [32].

Beans Lentils Chickpeas Peas
Adzuki beans Lupin beans Green lentils Desi chickpeas Green peas

Bambara beans Mung beans Red lentils Kabuli chickpeas Yellow peas
Cranberry beans Mungo beans Yellow lentils Pigeon peas

Faba or fava beans Navy beans
Great Northern beans Pink beans

Kidney beans Pinto beans
Lima beans Yellow beans

Cowpeas and black-eyed peas Vetch

Source: Marinangeli CP, et al. [33].
Table 1: List of Pulses.

Oil Seed Legumes

Production of seed oil contributes to the food security 
of a population that is expanding quickly. Fourty percent of 
all the calories consumed by low-income families come from 
oilseeds [34]. Legumes with oil seeds are higher in lipids and 
play a significant part in the industrial use of oil. In addition 
to protein and carbohydrates, the seeds of Arachis hypogea, 
Pongamia pinnata, and Glycine max each have around 52, 35, 
and 20% oil contents, respectively [35].

Vegetables Legumes

Vegetable legumes are harvest from the field before 
drying (green). The consumers are aware of these legumes’ 
well-balanced diet and can utilize them fresh, cooked or 
processed. Vegetable legumes are a valuable source of 
vitamins, minerals, carbohydrates, and other bioactive 
compounds that promote well health. The market prices of 
vegetable-type legumes are high Singh RJ, et al. [36], and 
snap bean and snap pea are the most popular varieties in 
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vegetable legumes [37].

Forage Legumes

Forage legumes are those crops that are used to feed 
livestock and have plant parts that may or may not contain 
grain [34]. They are commonly used for grazing, silage, and 
hay in both monocultures and mixed cultures with other 

species, especially grasses [38]. There are numerous species 
of legumes for forage, but 153 species are known important 
forage legumes worldwide [39]. Among the 153 species, 20 
species Table 2 are at the top for cultivating more for forage, 
fodder, grazing, silage, hay, and so on. Among the 20 species, 
alfalfa for hay, white clover, Leucaena and birdsfoot trefoil for 
grazing, and red clover for silage are more popular.

Popular name Scientific name Popular name Scientific name
Lucerne, Alfalfa Medicago sativa Calliandra Calliandra calothyrsus

White clover Trifolium repens Common vetch Vicia sativa
Leucaena, Guage, Subabul Leucaena leucocephala Pigeon pea Cajanus cajan

Red clover Trifolium pratense Lablab, Poor-man’s bean Lablab purpureus
Birdsfoot trefoil Lotus corniculatus Sesban, Egyptian pea Sesbania sesban

Cowpea Vigna unguiculata Broad bean, field bean Vicia faba
Subclover Trifolium subterraneum Sainfoin Onobrychis viciifolia

Mata raton Gliricidia sepium Hairy vetch Vicia villosa
Persian clover Trifolium alexandrinum Common bean, string bean Phaseolus vulgaris

Stylo, Tropical lucerne Stylosanthes guianensis Sulla Hedysarum coronarium

Source: Food and Agricultural Organization (FAO) [39].
Table 2: Forage Legumes.

Role of Legumes in Soil Health and Crop 
Productivity

The inclusion of legumes in cropping system improves 
the nutrient balance of the soil, which increases soil fertility 
and crop productivity. The BNF process in legume – based 
cropping enhancing the soil fertility. Legumes can modify 
their rhizosphere in addition to fixing nitrogen by exuding 
organic acids (such as psionic acid, citric acid, etc.) that 
increase the availability of P for both the legumes and the 
crop that follows. Legume residues increase carbon (C) 
sequestration, enable soil aggregate stabilization, and reduce 
soil bulk density. Due to their deep root systems, legumes can 
assist in increasing soil porosity, breaking up subsoil hard 
pans and recycling nutrients. Legumes can therefore help the 
current and next crops grow more effectively by possessing 
the following attributes.

Legumes in Intercropping

Cultivating two or more crops in the same location at the 
same time is known as intercropping. There are four main 
kinds of intercropping: 
•	 mixed intercropping, 
•	 row intercropping, 
•	 strip intercropping, and 
•	 Relay intercropping [40]. 

Because of BNF, including legumes in an intercropping 
system can increase soil fertility and buildup soil organic 
matter for crop productivity [41]. Intercropping is better 
for the environment than a single cropping system in places 
with scarce access to water, nutrients, and light [42]. Growing 
legumes with cereals in intercropping provides better 
canopy and effective soil conditions for better resource 
uptake through rhizosphere activities [43]. Legumes-based 
intercropping increases water use efficiency through root 
distribution in soil horizons and decreases evaporation 
through better vegetative canopy [44].

Microbial communities can be enhanced by legume-
based intercropping [43]. The soil microbial community 
is very important in soil function, such as nutrient 
cycling, decomposition of organic matter, and processes 
of nitrification, mobilization, and mineralization, and soil 
structure stability, all of which are important for crop 
growth and development [45]. Singh RP, et al. [46] showed 
that intercropping among legumes and cereals is more 
important in dry land agriculture. The intercropping of 
maize with soybean FU ZD, et al.[47], maize with pigeon 
peas, groundnuts, and cowpea Mucheru-Muna M, et al. [48], 
millet with groundnuts and sorghum with cowpea Nyoki D, 
et al. [49], rice with pulses, and barley with faba bean are 
reported by Mouradi M, et al. [50].
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Legumes and Soil Properties

In an intensive cropping system, frequent tillage of the 
soil and excessive doses of inorganic fertilizers cause the 
breakage of aggregate particles and the breakdown of soil 
organic matter. This causes physicochemical and biological 
health degradation of the soil. Because of these unfavorable 
agronomic practices, cultivated land is becoming less 
productive. The negative effects of these practices are soil 
compaction, reduction of soil organic matter, and lower crop 
productivity [51]. Legumes-based cropping systems have an 
outstanding role in providing organic matter into the soil, 
thus improving both the physicochemical and biological 
characteristics of the soil [11,43]. 

Soil Physical Properties: The main soil physical properties 
are soil density, porosity, aggregate stability, and texture, 
which are associated with soil aeration, water holding 
capacity, water infiltration, runoff, and soil erosion [52]. 
Legumes can improve the soil’s physical properties through 
the production of biomass for the biological activities in the 
soil [14]. A review of works of literature from the authors 
showed that a legume-based cropping system can increase 
the macro and micro aggregates for soil structure from 
52–111%, compared to sole cropping Chamkhi I, et al. 
[43], legumes, due to their residue in soil, increase water 
infiltration and soil formation Mousavi SF, et al. [53], legumes 
roots are reaching about 6–8 feet deep into the soil and thus 
can make better soil porosity, promote air exchange, and 
water percolation Yuvaraj M, et al. [7], the protein content 
and symbiotic process in legumes’ sticky properties, bind 
the soil aggregates. This binding of aggregate increases pores 
and decreases both soil erodibility and crusting.

Soil Chemical Properties: The chemical properties of soil, 
such as cation exchange capacity (CEC), soil pH, level of 
nutrients, and soil organic matter content, are so important 
for soil fertility, crop productivity, and ecologically friendly 
crop production. These properties of the soil can be improved 
in a legume-based cropping system [54]. Legumes are a 
vital source of soil organic matter that provides N, P, also 
sequesters C in the soil from their residues and atmospheric 
carbon dioxide (CO2) [14]. Legumes add organic acids to the 
soil through the decomposition of organic matter, which 
reduce soil pH. This reduction in pH important in alkaline soil 
with high pH. A review of the literature by Kumar R, et al. [55], 
Dhakal Y, et al. [12] showed that green legumes contribute to 
avoiding nutrient leaching, preventing weed development, 
and decreasing the destructive influence of agrochemicals. 
In addition, soil organic matter is a slow-releasing source 
of nitrogen (N), which significantly prevents air and water 
pollution compared to chemical-nitrogen fertilizers [56].

Soil Biological Properties: The biodiversity of the microbial 

community and the availability of energy for their activities 
to decompose organic matter are crucially important as far 
as the soil biological properties are concerned. The process 
of organic matter decomposition is very important because, 
without energy, nutrients cannot be used by the crop. 
Legumes are crops that provide energy for microbiological 
activities Ye X, et al. [57] and increase the diversity of the 
microbial community by incorporating different legumes in 
cropping systems [21,58,59]. In addition, Schelud’ko AV, et 
al. [60] found that legumes’ exudation of lectins can promote 
the mobility of growth-promoting rhizobacteria and their 
activity in the root zone.

The beneficial effects of a legume-based cropping system 
on the physical, chemical, and biological properties and soil 
health are shown in (Figure 1).
 

Figure 1: Beneficial Effects of Legumes - Based Cropping 
on Soil Properties [43].

Legumes as Green Manure

Green manure is the incorporation of green plants to 
improve soil fertility and productivity for subsequent crops 
and long-term purposes. Green manure is used in two ways: 
“in-situ,” where the green manure crops are grown for a short 
period and contributed in the same area, and “ex-situ,” where 
the green manure crop are collected from nearby areas and 
added to the soil 15–30 days prior to the planting of a main 
plant [61]. There are many crops for green manuring, while 
green legumes are very popular for N fixation and reducing 
the use of synthtic N fertilizers [62]. Legume green-manure 
crops are better than non-legumes by having the desired 
characteristics of agronomic performance, adaptability, 
and tolerance to biotic and abiotic stresses [63]. Legumes 
green-manure has many advantages, including lowering 
the amount of nutrients loss to the environment as a result 
of gaseous losses, surface runoff and leaching, which are 
enhancing soil quality with organic matter, preventing soil 
erosion, increasing the diversity and biological activity of 
microbial populations, and using fewer fertilizers.
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Legumes and Fertilizer use Reduction

Nitrogen is the element that is most abundant on 
Earth, but its scarcity severely restricts crop growth and 
productivity [34]. Amounts of N and P estimated to be used 
in agriculture today are more than 40 and 20 x 106 million 
tons, respectively, will be needed to meet crop production 
needs in 2040 [64]. The land, water, and atmosphere are 
negatively impacted by this widespread usage of inorganic 
fertilizers. To maintain a sustainable agricultural system, 
chemical fertilizers must be replaced with another substance. 
Exudates that transmit signals to rhizobia in the root zone 
and the availability of nutrients through the BNF are both 
achievable in cropping systems based on legumes use [65].

Legumes can reduce the amount of fertilizer needed 
for the following crop by just requiring the initial dose of 
nutrients. Food legumes can save 170–220 kg ha-1 of nitrogen 
compared to non-legume crops, and an additional 40–70 kg 
ha-1 of nitrogen can be saved for the following crop, according 
to research of Fustec J, et al. [66], Varma D, et al. [67]. 
According to Bues A, et al. [68], clovers can conserve between 
30 and 60 kg ha-1 of nitrogen for the crops that follow by 
using BNF without applying additional nitrogen. Compared 
to non-legumes, including forage and grain legumes in crop 
rotation for 4 to 5 years can reduce nitrogen use by 30-90 kg 
ha-1 [69]. Compared to other systems, legume-based cropping 
can cut the consumption of nitrogen fertilizer by 38% [70]. 
Consequently, biological nitrogen fixation contributes to 
ecologically friendly agricultural systems by decreasing the 
requirement for commercial N fertilizers Kebede G, et al. [71] 
as well as energy for fertilizer manufacture and delivery [72].

Phosphorus is another primary macronutrient for plant 
growth after nitrogen (N). Soil usually contains high amounts 
of P, which is mostly unavailable to plants [73]. Legumes can 
change the form of inaccessible P into an available form by 
reducing the pH of the rhizosphere Nwoke OC, et al. [74], and 
allowing the phosphatase enzyme to enter the soil, which 
aids in the decomposition of P-containing organic materials 
[75].

Legumes as a Benefit for Subsequent Crops

Proper crop rotation is related to the quantity of 
sequestered nitrogen in the soil for succeeding crops [14]. 
So, it is crucial to include proper legumes in crop rotation 
[16]. The addition of legumes improves the production and 
other qualities of succeeding crops [76]. Legumes provide N 
to future crops via the BNF process Preissel S, et al. [76], add 
organic matter to improve soil structure Hernanz JL, et al. 
[77], mobilize P Shen J, et al. [78], increase soil water holding 
capacity Angus JF, et al. [79], and decrease the detrimental 
effects of pests [80]. It has been shown in a legume-based 

intercropping system that all the fixed nitrogen by the 
legume is not used by the current crop; instead, some 
of the fixed nitrogen is left for subsequent crops [16,17] 
(Figure 2). Legumes increase the production of succeeding 
crops, according to the evidence presented by a number of 
researchers. According to Ahmadi AY, et al. [81], the yield of 
wheat was about 5% higher in the land where soybeans had 
been the preceding crop than it was for maize. In comparison 
to non-legumes, Yusuf AA, et al. [20] showed a 34% higher 
yield of maize in rotation with legumes. Ahmad T, et al. [82] 
found a favorable link between the production of rice and 
legumes, with a 0.6-1.1 t ha-1 higher yield than cereals. In 
this situation, adding legumes to the crop rotation is crucial 
for boosting and maintaining the productivity of future crops. 

Source: Meena RS, et al. [28].
Figure 2: Estimates of the Amount of N-Fixed and the 
Amount left over after Harvest. 

Conclusion

This review concluded from the aforementioned topics 
that legumes have the capacity to fix atmospheric nitrogen, 
solubilize phosphorus, boost soil microbial diversity and 
activity, add plentiful plant residues, recycle nutrients, 
enhancing soil fertility and productivity and have positive 
impacts on the productivity of subsequent crops. Legumes 
are also a cost-effective, environmentally friendly, bioactive 
and other antioxidant substances as well as sustainable 
source of protein, starch, dietary fiber, vitamins, and mineral 
nutrients that are beneficial for a healthier lifestyle and the 
suppression of hunger. Furthermore, Legumes which are 
used for different forms of feeding such as hay, silage, and 
pasture are asignificant source of animal feeds, because they 
have higher levels of dry matter and digestible proteins than 
grasses. So, using legume crops in crop production systems 
can improve the environment, the economy, and nutrition 
security.
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