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Abstract

This study introduces a novel approach to emotion recognition by amalgamating information from heterogeneous modalities, 
specifically audio and video. We employed techniques such as energy, zero crossing rate, and Mel-Frequency Cepstral 
Coefficients (MFCC) for audio feature extraction, which showed promising results. For video feature extraction, spatial-
temporal Gaussian kernels were used to organize video frames within a linear scale space, followed by the application of 
a Gaussian-weighted function to the second momentum matrix for further feature extraction. The Multimodal Feature 
Aggregation (MFA) fusion method was employed to unify audio and video features, resulting in a comprehensive dataset. 
Evaluation through the Fusion of Emotion Recognition Convolutional Neural Network (FERCNN) model, supported by the "TPU 
VM v3-8" accelerator TPU is a Tensor Processing Unit, showcased notable performance improvements. Using the RAVDESS 
and CREMAD datasets, accuracies of 94.66%, 95.82%, and 94.36% in the RAVDESS dataset and 79.45%, 96.62%, and 70.14% 
in the CREMAD dataset for audio, video, and multimodal modalities, respectively, were achieved. These outcomes surpass 
the capabilities of existing multimodal systems, underscoring the efficacy of our proposed approach. Emotion recognition, 
particularly through multimodal means, plays a critical role in various domains, including human-computer interfaces, 
healthcare, legal proceedings, and entertainment. Fusing Audio and Video Modalities to Elevate Human-Computer Interaction 
and Intelligent System Performance is essential for enhancing communication within these domains. The proposed model is 
termed "DualVision EmotionNet: DV EmotionNet".
     
Keywords: Emotion Recognition; Multimodal System; Human-Computer Interaction; Intelligent Systems; Fusion 
Techniques; Emotional Context Understanding

Abbreviations: MFCC: Mel-Frequency Cepstral 
Coefficients; MFA: Multimodal Feature Aggregation; 
FERCNN: Fusion of Emotion Recognition Convolutional 
Neural Network; AI: Artificial Intelligence; DNN: Deep Neural 
Network’s; DBNs: Deep Belief Networks; LSTM: Long Short-
Term Memory; RTMRBM: Recurrent Temporal Multimodal 
Restricted Boltzmann Machine; RNNs: Recurrent Neural 
Network; CNNs: Convolutional Neural Network; SVM: 

Support Vector Machine; EEG: Electroencephalography; ZCR: 
Zero Crossing Rate.

Introduction

Emotion recognition has emerged as a pivotal 
component in today’s intelligent systems, holding 
immense potential to transform various aspects of human-
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computer interaction, healthcare, law, and entertainment. 
This transformative technology enables machines to 
comprehend and respond to human emotions, bridging the 
gap between artificial intelligence and human sentiment. 
The applications of emotion recognition extend across 
diverse fields and industries, shaping the way we interact 
with technology and enhancing human experience. In legal 
contexts and security measures, emotion recognition assists 
in identifying deception, assessing witness testimonies, 
and enhancing surveillance systems. Law enforcement 
agencies utilize it to analyse facial expressions in real-time 
during interrogations, aiding in assessing the credibility of 
witnesses or suspects’ emotional states. The entertainment 
industry harnesses emotion recognition to create immersive 
and personalized experiences for audiences, adapting video 
games, virtual reality, and media content to the player’s or 
viewer’s emotional responses, thus enhancing engagement. 
Despite its evident significance, emotion recognition has 
evolved significantly in recent years with the development 
of multimodal approaches, transcending experimental 
stages to become deeply ingrained in our modern society. 
Traditional algorithms often focused on single data sources, 
resulting in limited understanding of the full emotional 
context. Multimodal systems, however, combine information 
from multiple sources, using fusion techniques to improve 
accuracy. As we explore emotion recognition, we will delve 
deeper into its technical aspects, methodologies, and real-
world impact, offering insights into how this technology is 
shaping healthcare, entertainment, and human-computer 
interaction. The proposed model, termed “Dual Vision 
EmotionNet; simply, DV EmotionNet,” encapsulates the 
concept of utilizing two different perspectives or modalities, 
such as audio and video, to capture a more comprehensive 
understanding of emotions.

Literature Review

Emotion recognition is vital for improving human-
computer interaction and the efficiency of intelligent systems. 
Usually, this task has been approached separately using 
either audio or video modalities. However, technological 
advances in recent years have fuelled an already growing 
interest in creating an integrated multimodal approach which 
incorporates audio as well as video modalities to accomplish 
greater precision and reliable emotion recognition. Humans 
convey and view emotions in a variety of ways. The human 
sensory system intrinsically fuses multimodal information in 
a complex manner. The introduction of artificial intelligence 
(AI) methods, specifically deep learning techniques, 
facilitated the recent rapid technological development in 
the human-computer interaction domain. Many AI-based 
systems can detect users’ affective states automatically, 
resulting in a personalized experience in terms of interaction 
between humans and computers [1]. Case studies of these 

methodologies and approaches are discussed with the 
examples ‘Social Robots’ by Cavallo F, et al. [2] and ‘Emotion 
monitoring systems for race car drivers’ by Katsis CD, et al. [3] 
AI-based Emotion detection systems supplement traditional 
information in a wide range of application scenarios, 
including healthcare, customer service, advertising, security, 
and identifying fraud. According to Tzirakis P, et al. [4], each 
individual is distinctive and may convey emotions in their 
own distinct manner, based on their cultural background, 
age, gender, or earlier life experiences [4]. According to 
Ji Q, et al. [5], emotional states can be used to track and 
predict fatigue. Emotion recognition in speech recognition 
can be utilized by call centers to detect the psychological 
condition of the caller while offering feedback on service 
quality [6]. It is mentioned in Tzirakis P, et al. [4] that, Deep 
Neural Network’s (DNN) have significantly improved the 
efficiency of pattern recognition models. Recently, a number 
of new neural network architectures, such as autoencoder 
networks [7], Convolutional Neural Networks [8], Deep 
Belief Networks (DBNs) [9], and memory enhanced models 
of neural networks such as Long Short-Term Memory (LSTM) 
[10], have been revitalized. These Models have made the 
process of pattern recognition easier and more reliable 
than before. In their work, Hu D, et al. [11] put forward, a 
temporal multimodal network called Recurrent Temporal 
Multimodal Restricted Boltzmann Machine (RTMRBM) to 
model audiovisual data sequences in another study. In a 
study, Huang Y, et al. [12] combined DNNs and hypergraphs 
to propose a transductive learning framework for image-
based emotion recognition. Specifically, after training the 
DNN for the emotion classification task, each node in the 
final fully connected layer was treated as a characteristic 
and used to form a hyperedge in a hypergraph. In their 
Study, Kahou S E, et al. [13] used Recurrent Neural Network 
(RNN’s) and Convolutional Neural Network (CNN’s) to 
recognize categorized emotions in videos. A CNN was trained 
to recognize emotion in static images. The characteristics 
extracted from the CNN were then used to train an RNN to 
generate an emotion to the entire video. According to Katsis 
CD, et al. [14], Emotions frequently involve both thinking and 
feeling, which are both cognitively experienced events as 
well as physical changes to the body. Although no technology 
can truly read our thoughts, there are a growing number 
of sensors that use AI and Deep Learning techniques to 
record various physical manifestations of emotion, such as 
footage of facial expressions and posture or gesture changes 
[15,16]. In their study, Kim Y, et al. [17] put forward four DBN 
architectures, one of which was a basic 2-layer DBN, and 
the others were variations on it. The basic architecture first 
learns the audio and video features separately, then joins 
these features from the two modalities and uses them to learn 
the second layer. A Support Vector Machine, or SVM, was 
used to evaluate the features. According to the authors Radoi 
A, et al. [1], Emotion recognition systems that use only visual 
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information (i.e., video frames) can be divided into static and 
dynamic methods based on feature representations. Static-
based methods encode features with spatial data from single 
frames without regard for temporal extent, whereas dynamic-
based methods account for the temporal relationship 
between continuous frames in the input sequence. For 
feature extraction in static-based methods, state-of- the-art 
deep neural network architectures (VGG [18], ResNet [19]) 
have been proposed, while emotion classification is carried 
out using a Support Vector Machine classifier [20]. Wei 
W, et al. [21] investigated a multimodal facial recognition 
approach that combined low-level facial key point features 
with a high-level self-learning feature. Experiments revealed 
that this proposed method outperformed single-modal 
features in face recognition, demonstrating its effectiveness. 
Similarly, The Multichannel Convolutional Neural Network 
technique was put forward and tested on the FER dataset in 
a similar study. The results demonstrate that the proposed 
MCCNN outperforms traditional CNN-based architectures. 
Furthermore, the efficiency of multimodal deep learning 
algorithms, which use multiple modalities such as text, image, 
audio, and video, outperforms that of single modalities (i.e., 
unimodal) frameworks [22]. In Guo JJ, et al. [23], classified 
five emotions using eye images, eye movements, and 
Electroencephalography (EEG) signals. According to the 
findings, the three modes may enhance the ability to identify 
the five complementary emotions. Authors Santamaria-
Granados L, et al. [24] used a CNN to extract characteristics 

from a range of physiological signals and predict sentiment 
using fully connected network layers. Trials show that 
this method achieves higher precision in emotional state 
classification. Authors He G, et al. [25] describes a data 
augmentation technique that uses a large labelled visual 
data set to increase the quantity of audio-based emotion 
detection data. Similarly, video facial expressions can be 
used to increase awareness and prediction tracking of 
emotions in audio data, resulting in cross-modal transfer of 
knowledge among audio and facial modalities throughout the 
emotional context [26]. The openSMILE toolkit, widely used 
in autonomous emotion recognition from speech [27], was 
one of the most effective methods for audio extraction and 
categorization of features of speech. Similarly, spectrogram 
representations of emotional speech perform well in 
automatic speech emotion recognition [28]. Additional 
findings have shown that, emotional state is reflected in 
human biosignals; thus, emotion recognition methodologies 
based on the classification of extracted series of features 
from these biosignals are gaining popularity [29-32].

Proposed Method

The performance of the current work done is compared 
with the already existing work done. It has been observed 
that the DV EmotionNet performed better, and a detailed 
description of the comparisons given in Table 1.

Name of the Author Datasets Utilized Test Accuracy Percentage Accuracy of DV EmotionNet
Fu Z, et al. [33]

Ravdess

75.76

94.36%

Cao H, et al. [34] 76.79
R Chatterjee, et al. [35] 90.48

M Xu, et al.[36] 92.49
Chang, X. et al. [37] 91.4

Livingstone SR, et al.[38] 93.5
Wang W, et al. [39] 89.8

K DONUK, et al. [40] 59.27
Beard R, et al. [41] 58.33

Samadiani N, et al. [42]

Cremad

68

70.14%
Ghaleb E, et al. [43] 66.5
Beard R, et al. [41] 65

He G, et al. [44] 64

Table 1: Accuracy comparison of DV EmotionNet Model with other state of the art methods.

Datasets Description

Experimentation and evaluation in this study utilize 
the CREMAD and RAVDESS datasets, both encompassing 

emotional expressions of actors in both audio and video 
formats. Common emotions such as anger, disgust, fear, 
happiness, neutrality, and sadness are present in both 
datasets across both modalities. Notably, the RAVDESS 
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audio data introduces two additional emotions, calm and 
surprise. The CREMAD dataset comprises 22,326 and 
60,359 instances of emotions related to audio and video, 
respectively. In comparison, the RAVDESS dataset includes 
4,321 and 45,225 instances of emotions in audio and video, 
respectively. Further details about these datasets can be 
found in the Table 2 provided below. The Table 2 provides 
a comprehensive breakdown of emotion types present in 
the CREMAD and RAVDESS datasets across different modes 
of data, namely Audio and Video/Image. In the CREMAD 
dataset, six emotions- Angry, Disgust, Fear, Happy, Neutral, 
and Sad are explored in both audio and video modes. The 
corresponding numbers of instances for each emotion in the 
audio and video modes are detailed, revealing the dataset’s 
diversity in emotional expressions. For instance, the angry 
emotion has 3,510 instances in audio and 10,472 instances 
in video mode. Similar patterns are observed for other 
emotions within CREMAD. For the RAVDESS dataset, seven 
emotions- Angry, Calm, Disgust, Fear, Happy, Neutral, Sad, 
and Surprise are considered. Notably, Calm and Surprise 
are unique to the RAVDESS dataset. The table highlights the 
distribution of emotions across audio and video modes in 
RAVDESS, emphasizing the varying number of instances for 
each emotion. This detailed presentation serves as a valuable 
resource for understanding the composition and diversity of 
emotional data in these datasets, providing essential insights 
for researchers and practitioners working on emotion 
recognition tasks.

Name of The 
Dataset

Emotion 
Type

Data mode and Number 
of Emotions

Audio 
Mode

Video/Image 
Mode

Cremad Dataset

Angry 3510 10472
Disgust 4116 10098

Fear 3918 10626
Happy 3709 9661

Neutral 3666 10867
Sad 3417 8635

Ravdess

Angry 476 7603
Calm 524 NA

Disgust 628 7885
Fear 542 7394

Happy 610 7784
Neutral 385 7419

Sad 559 7140
Surprise 596 NA

Table 2: Description of CREMAD and RAVDESS Datasets.

Image Feature Extraction

Emotion recognition is a complex task that requires the 
extraction and analysis of various modalities, including image 
features. In this section, we delve into the process of image 
feature extraction and its significance in enhancing human-
computer interaction and intelligent system performance. 
The first step in image feature extraction is to pre-process 
the input images. This involves resizing, normalizing, and 
enhancing the images to ensure consistency and improve their 
quality. Additionally, noise reduction techniques are applied 
to minimize any distortions that could affect accurate feature 
extraction. Once the images are pre-processed, a multitude 
of features can be extracted for emotion recognition. These 
features include but are not limited to facial landmarks, 
which capture key points on the face such as the eyes, nose, 
and mouth. Other important features involve texture analysis 
to identify patterns in facial expressions that correlate with 
specific emotions. An intriguing aspect of image feature 
extraction is the utilization of deep learning techniques such 
as CNNs. These networks are trained using massive datasets 
and possess remarkable capabilities in learning hierarchical 
representations from raw image data. By leveraging CNN 
models for emotion recognition tasks, we can achieve greater 
accuracy and robustness in identifying subtle emotional cues. 
In the process of analysing a multimodal dataset comprising 
video sequences, it is imperative to transform these video 
segments into a series of images, subsequently extracting 
relevant facial features from these images. The following is 
a detailed description of the procedures involved in feature 
extraction from the provided facial emotion videos.
Video to Image Conversion and Linear Scale Space 
Representation: Firstly, from the provided set of facial 
emotion videos denoted as 𝑓𝑣i𝑑𝑒𝑜 within the multimodal
dataset, a pivotal step involves the conversion of these videos 
into a sequence of images. Similar to the equations proposed 
by Kamarol SKA, et al. [45], these images are subsequently 
represented within a linear scale space termed 𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎ce, which 
is achieved through the application of a convolution process 
to the original video sequence 𝑓𝑣i𝑑𝑒𝑜  with a three-dimensional 
Gaussian kernel. Mathematically, the transformation of 𝑓𝑣I𝑑𝑒𝑜  
to 𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒 is expressed as following Table 3.

2 2 2 2(.; ,T (.; ,T (.)
scalespace scalespace scalespace scalespacescalespace L L k L L VideoL Gau fσ σ= × (1)

Mathematical Representation Significance
𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒 Linear Scale Space

𝑓𝑣i𝑑𝑒𝑜 Facial Video Sequence
𝜎2 𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒 Spatial Variance
𝑟2 𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒 Temporal Variance

𝐺𝑎𝑢𝑘
Spatio-Temporal 
Gaussian Kernel

Table 3: Description of Mathematical Representation in (1).
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A. Spatio-Temporal Gaussian Kernel (Table 4):
B. 

2 2 2 2 2 2 2( , , t : ,T ) exp( ( ) / 2 / 2 )
scalespace scalespace scalespace scalespacek d L L L d LGau x y x y t Tσ σ= − + −

   
(2)

Mathematical 
Representation Significance

𝑥, 𝑦
spatial axes, corresponding to the 

frames derived from 𝑓𝑓𝑣𝑣𝑣𝑑𝑒𝑜 

𝑡𝑑

Temporal axis within the temporal 
domain

𝜎2
𝐿sc𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒

Spatial Variance, which affects the 
spatial distribution

T2
𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒

Temporal Variance, which influences 
the temporal aspects of the 

representation

Table 4: Description of Mathematical Representation in (2).

Through this methodology, the videos are effectively 
transformed into a series of images, which are then 
further represented in the linear scale space 𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒. This 
representation is crucial for subsequent feature extraction 
and analysis, forming the foundation for advanced 
multimodal emotion recognition systems.

A technique put forth by Harris C, et al. [36] involves 
the utilization of a Gaussian window for the identification 
of salient points within an image. These salient points, in 
turn, enable the determination of locations within a video 
sequence, denoted as 𝑓𝑣i𝑑𝑒𝑜 , where significant changes in 
image intensity occur within defined spatial and temporal 
domains. This identification is achieved by slightly adjusting 
the Gaussian window in various directions. The discernible 
points are subsequently detected through the convolution 
of the Spatial-Temporal Second Momentum matrix with a 
designated Gaussian weighted function denoted as 𝐺𝑎𝑢𝑘(. 
; 𝜎2

i, T2
i). The Spatial-Temporal Second Momentum matrix 

is a 3x3 dimensional matrix, which serves as a pivotal 
component in this method. Its structure and properties are 
essential for the accurate detection of significant changes in 
intensity over spatial and temporal dimensions. For 
simplicity 𝑋2

𝐿𝑠𝑐𝑎𝑙𝑒𝑠𝑝𝑎𝑐𝑒 is written as 𝑋2
𝐿𝑠𝑠 below.

        

2

2

2

ssx ssx ssy ssx sst

ssx ssy ssy ssy sst

ssx sst ssy sst ssz

L L L L L

L L L L

L L L L L

 
 
 
 
  

                                (3)

And the distinct point’s identification is given by

  

2

2 2 2

2

(., , )
ssx ssx ssy ssx sst

ch k ssx ssy ssy ssy sst

ssx sst ssy sst ssz

L L L L L

u Gau r L L L L

L L L L L

σ

  
  
 = ×  
      

              (4)

Where 𝐿𝑠𝑠𝑥, 𝐿𝑠𝑠𝑦 & 𝐿𝑠𝑠𝑡 are first order derivatives that are 
defined as follows.

 
2 2(., ,T ) ( )ssx lss lss x k VidL Gau fσ = ∂ ×                     (5)

 
2 2(., ,T ) ( )ssy lss lss y k VidL Gau fσ = ∂ ×                   (6)

    
2 2(., ,T ) ( )ssz lss lss z k VidL Gau fσ = ∂ ×                                (7)

Where 2 2 2 2,Tw ssk lss i ssk lss sskS S r and Sσ σ= × = × is constant.

The existence of distinct points in the 𝑓𝑣i𝑑 is indicated 
by the eigen values 𝜆1, 𝜆2, 𝜆3 that can hold larger values. In 
the Spatial-Temporal domain the variations that are existing 
in the intensity of image are obtained by concatenating the 
𝑡𝑟𝑎𝑐𝑒𝑙𝑠𝑠 and determinant of 𝜇𝑐ℎ which is given as

3
1 2 3 1 2 3( ) ( )ffn ch lss chH u K trace u kλ λ λ λ λ λ= − × = × × − + +      (8)

𝐾 is a constant and the function 𝐻𝑓𝑛 is normalized such 
that the effect of variations in the images due to illumination 
can be removed.

Audio Feature Extraction

Zero crossing rate (ZCR), Mel Frequency Spectrum 
Coefficient (MFCC), pitch and energy are some of the feature 
extraction techniques used to extract the features of the 
emotions from the given audio signal.
Zero Crossing Rate: The number of times the audio signal 
crosses the zero-line, x-axis, is referred to as the zero-
crossing rate, and it is stated as follows.

1

1Z ( ( )) ( ( 1))
2n

N
t Aud Audt Aud Audtn

sign x n sign x n
N =

= − −∑   (9)

{ }01
0( ) Audtif x

Aud Audt otherwisesign x >=           (10)
 

Where, 𝑡𝑛  ∈ [𝑡𝑛 1, 𝑡𝑛 2], 𝑥𝐴𝑢𝑑𝑡(𝑡𝑛 ) is the respective audio signal 
that was divided into segments by using a sliding window 
that was having al length of 𝑇, 𝑛 ∈ [0, 𝑁] and 𝑥𝐴𝑢𝑑𝑡(𝑛 ) is the 𝑡𝑡ℎ

n 
Segments time
Sequence.

MFCC (Mel Frequency Cestrum Coefficient): The 
coefficients of the corresponding spectral form of the audio 
stream are represented using a nonlinear Mel scale. The Mel 
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frequency was used to analyze cepstral coefficients, and the 
steps below were followed.
Step 1: Audio Signals are splitted into frames by using fixed 
shift and window sizes.
Step 2: Fast Fourier Transform (FFT) for each frame is 
calculated.
Step 3: Frequencies are based on the Mel Scale used.
Step 4: Logarithm of the Resulted output of Step 3 is 
calculated.  
Step 5: Discrete Cosine Transform (DCT) for each frame is 
calculated.
Acoustic tube characteristics are exhibited by MFCC that 
contains great amount emotional information which plays a 
key role in emotion recognition.

Pitch: It depicts the signal’s fundamental frequency [47]. The 
valence of an audio stream is connected to its rhythm and 
average pitch from an emotional standpoint. For example, 
higher amount of pitch may be associated to discomfort, 
lower standard deviation to sadness and usually happiness 
and discomfort are having higher talk and pitch rates 
whereas sadness can be represented by lower talk and pitch 
rates [48]. Autocorrelation is used to calculate the pitch of 
the audio signal and is given as follows.

Let xAud
[n] be a Stochastic Process Sinusoidal function given as 

0[ ] (w n )Audx n Cos φ= +  and the autocorrelation 
of xAud

[n] is given below

  { }* *[ ] [ ] [ ]Aud Aud AudR t E x n x n t= × +       (11)

  0
1 (w )
2

cos t=
                         (12)

Maximum of the autocorrelation value is used to 
calculate the pitch, 𝑆𝐴𝑢𝑑 Samples are used to calculate the 
estimate of RAud[𝑡]

0

^ 1R [ ] ( [ ] [ ])Aud

Aud

s t
Aud Aud Aud Aud Aud Auds

Aud

t W s xS W s t
s =

−
= × × × +∑   (13)

WAud[SAud] is a window of lengh SAud and the Expected Value 
of RAud[t] is given as

  
{ }^ (w )R [ ] (1 ) ,

2
Aud Aud

Aud Aud Aud
Aud

t cos sE t t S
s

×
= − × <        (14)

Energy: It represents the signal’s intensity or total energy. 
From an emotional standpoint, an audio signal having 
exciting emotions (e.g., pain or happiness) has more energy 
than an audio signal containing sadness or fatigued feelings 
[49]. The energy of the audio signal 𝑥𝐴𝑢𝑑(𝑛 ) is given as

  

2
1

1 ( ( ))N
Aud Audn

Energy x n
n =

= ×∑         (15)

Feature Level Fusion

From the features obtained from audio and video 
signals, only a few portions of the features are related to 
emotions. Personality, age, gender, and many other features 
are obtained from audio and video signals, which may impact 
the quality of recognition of the emotions that are used in 
the model for training. Feature Level Latent Space methods 
are one of the existing categories of methods that are used 
to find the common features related to emotions and maps 
them into the required latent space. By maximising the cross 
correlation of the respective features and by minimising 
the feature distance or by taking the normalisation of the 
features, they can be used in feature level fusion. Marginal 
Fisher Analysis (MFA) is a supervised method that is used for 
audio video feature level for fusion by extracting the required 
features from the respective modalities. The process of 𝑀𝐹𝐴𝑠 
feature level fusion is given as below.

Information related to class labels is used in latent space 
generation. The compactness in the intraclass is given as

  1( )

2

k j

T T
compact AV i AV ii i N

S W x W x+∈
= −∑ ∑          (16)

   2 ( )T AV AV T
AV AV AV AVW X D S X W= − ×        (17) 

XAV = {x1, x2,…, xn} are the set of frames, N is the total 
samples and Nk1

+ is k1 neighbours of xi in the same class

   { }1( )1
0

k jif i NAV
ij otherwiseS

+∈=                                       (18)

   
AV AV

ij ijj
D S=∑            (19)

And the Inter-Class Separability is given by

  2( )

2

( , ) k ci

T T
p AV i AV ii i j p

ICP W x W x
∈

= −∑ ∑        (20)

 2 (D )T P P T
AV AV AV AV AV AVW x S W W= − ×        (21)

𝑐i is the emotion of class i, 𝑃𝑘2(𝑐i) is the set of 𝐾 2 nearest pairs 
and 𝑆𝐴𝑉 is given by

  { }2( , ) ( )1
0

k

ij

if i j p cip
AV otherwiseS ∈=        (22)

And the objective function is given as follows
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 ^ ( )arg min
( )AV

T AV AV T
AV AV AV AV

AV w T T P T
AV AV AV AV AV AV

W X D S X WW
W X D S X W

  − =   −   

  (23)

And the optimal solution is given by

  T
AV AV AVY X W=

                                         (24)

  
P

AV AV AV AVL Y L Yλ× = ×                                        (25)

Where 𝐿𝐴𝑉 = 𝐷𝐴𝑉 – 𝑆𝐴𝑉 and 𝐿𝑃
𝐴𝑉 = 𝐷𝑃

𝐴𝑉-𝑆𝑃
𝐴𝑉 are called 

Laplacian matrices
 For P

AV AVW and W

Algorithm for DV EmotionNet Model

Input: Audio Data / Video Data Output: Emotion classification 
Begin
Step 1: Preprocess and collect audio data
Step 2: Extract audio features
Step 3: Preprocess and collect video data
Step 4: Extract image features
Step 5: Combine audio and image features into a multimodal 
latent space
Step 6: Define DV EmotionNet CNN architecture:
	Initialize layers and parameters
	Define convolutional, max pooling, dropout, and dense 

layers
	Utilize Accelerator TPU VM v3-8 for training.
Step 7: Forward pass through the CNN model:
	Apply convolution and max pooling operations
	Flatten the output
	Apply dense layers with Rectified Linear Unit (ReLU) 

activation
	Apply dropout
	Final classification with softmax activation
Step 8: Backpropagation and optimization:
	Compute loss
	Update weights using backpropagation algorithm
	Utilize TPU accelerator for parallel processing.
Step 9: Repeat steps 7-8 for multiple epochs until convergence
Step 10: Evaluate the trained model on a validation set
Step 11: Test the model on unseen data
Step 12: Analyse results and interpret emotion classification 
performance End

DV EmotionNet Model Description in Detail

The DV EmotionNet CNN architecture consists of four 
fully connected layers, one flattening layer and two dense 
layers. All the fully connected layers are interconnected with 
each other where the output features obtained from each 
fully connected layer are given as an input to the next fully 
connected layer. The inputs to the first fully connected layer 

are audio, video, and multimodal features that are obtained 
during pre-processing by applying the audio feature, image 
feature, and feature level fusion extraction techniques 
described in the above sections. The first fully connected 
layer consists of convolution and max pooling layers, and the 
representation of the first fully connected layer is given as

  ( )1 ,
n

Conv AV i ji
Out Act L W= ×∑        (26)

Where 𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣1 is the output of the convolutional layer, 𝐴𝑐𝑡
is the activation function, 𝐿𝐴𝑉 is the latent space or latent 
features obtained after applying feature level fusion, and W𝑛 

i,j 
is the set of weights associated with the convolutional layer.

   ( )1 1Convf ConvOut Max polling Out=                      (27)

𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣𝑓𝑓1 is the output obtained from the max pooling layer, 
where the input is 𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣1 a first convolutional layer output. 
The output of the first fully connected layer 𝑂𝑢𝑡𝑀𝑎𝑥𝑝𝑜 𝑙𝑙1is given 
as input to the second fully connected layer, which consists 
of convolutional, max pooling, and dropout layers, and the 
representation of the second fully connected layer is given as

  ( )2
2 1 ,

n
Conv Max poll i ji

Out Act Out W= ×∑                       (28)

  { }2 2Max poll ConvOut Max polling Out=
                      (29)  

( ) [2 1]
2 2(Out (0.2)) n

Conv f Max pollOut Act Drop W += × ×          (30)

𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣2𝑓 is the output of the second fully connected 
layer, 𝐷𝑟𝑜 𝑝(0.2) which means that 20% of the features were
dropped from the output of the max pooling layer and, W[2𝑛 +1] 
are associated weights used.

𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣2𝑓 the output of second fully connected layer, 
is given as input to the third fully connected layer which 
consists of the same layers as second fully connected layer 
and the output of the third fully connected layer is given as

 ( ) [2 2]
3 3(Out (0.2)) n

Conv f Max pollOut Act Drop W += × ×        (31)

𝑂𝑢𝑡𝑐𝑜 𝑛 𝑣3 is given as input to the fourth fully connected layer 
which consists of a convolution and max pooling layers and 
the output is given as

  ( )4 3 ,
n

Conv Conv f i ji
Out Act Out W= ×∑           (32)                            

  { }4 4Conv f ConvOut Max polling Out=                          (33)

The output of the fourth fully connected layer is flattened 
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by giving to a flatten layer and the output is represented as

1 1 2 2 3 3 4 4( , , , )CNN Convf Convf Convf ConvfFlatten Flatten a Out a Out a Out a Out= (34)

The output of a flattening layer is given to a dense layer 
and a dropout of 20% is applied to the output obtained from 
the dense layer. Finally, the obtained features are given as 
input to a dense layer where the features a classified as an 
output. A Relu activation function is used in the dense layers 
that are used in between, and a SoftMax activation function 
is used in the final output layer. The representation of the 
dense, dropout, and final output layers is as follows.

 ( )1
1 Re( , ( )Dense N lu CNNOut Dense Den Act Flatten=     (35) 

  
1 1

1( . (0.2)) WDrop DenseOut Act Out Drop= × ×
 
       (36)

  ( )1 1
max, ( )F c soft DropOut Dense Den Act Out=         (37)

𝑂𝑢𝑡𝑙
𝐷𝑒𝑛 𝑠𝑒1 is the output of the dense layer, 𝑂𝑢𝑡𝑙

𝐷𝑟𝑜 𝑝 
is the output of dropout layer 𝑂𝑢𝑡𝑙

𝐹 is the final classified 
output. Figure 1 gives the architecture of the DV EmotionNet 
CNN.

Figure 1: DV EmotionNet Architecture.

Accelerator TPU VM v3-8: The accelerator employed in this 
study is the “TPU VM v3-8,” specifically designed for handling 
deep learning tasks. It finds support in Tensorflow 2.1, 
accessible through the Keras high-level API and, at a more 
granular level, within models employing a custom training 
loop. Within Kaggle, TPUs serve as network-connected 
accelerators, and the initial step involves locating them on the 
network, a task facilitated by TPUClusterResolver.connect(). 
Subsequently, a TPU-Strategy is instantiated, encompassing 
the essential distributed training code tailored for TPUs and 
their 8 compute cores. To leverage the TPU-Strategy, finalize 
the process by instantiating model within the strategy’s 
scope. This action ensures that the model is established on 
the TPU itself. It’s important to note that the size of the model 
is confined solely by the TPU’s RAM and isn’t constrained by 
the memory available on the VM running the Python code. 
Throughout model creation and training, the standard 
Keras APIs can be seamlessly utilized. Throughout model 
creation and training, the accelerator supported the model 
by simplifying the development process and harnessing 
the computational power of the TPU for accelerated deep 
learning task.

Data Pre-Processing

The datasets used in the proposal contain data related 
to audio and video as described in the dataset description 
section. The features of the video and audio data are obtained 
by using the image feature extraction and audio feature 
extraction methods explained above. There is dissimilarity 
in the number of features obtained from audio and video 
datasets. There are more features in the resultant dataset of 
video images when compared to audio files. A dimensionality 
reduction technique is applied to the image set to reduce this 
so that the same numbers of features are present in the audio 
and video resultant datasets. Finally, a multimodal dataset is 
obtained by combining the resultant features of audio and 
video from the respective datasets by using feature- level 
fusion techniques. The detailed description of how the 
feature level fusion is being done is explained in the section 
Feature-Level Fusion. The resultant multimodal datasets are 
given for the CNN model for evaluation. The description of 
the model is given in the DV EmotionNet Model Description 
section. Figure 2 gives the workflow of the proposed work 
done in this paper.

Figure 2: Workflow of the Our Work.
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Experimentation and Results

Figures 3.a to 3.f give the train and test accuracies, 
train and test accuracies losses, and confusion matrices 
on the RAVDESS dataset. Figures 3.a and b, 3.c and d, and 
3.e and f represent training and testing accuracy and loss 
comparisons in audio, video, and multimodal modes. On the 

CREMAD dataset, train and test accuracies and train and 
test accuracies losses are shown. Figures 4a to 4f represent 
training and testing accuracy and loss comparisons in audio, 
video, and multimodal modes. A detailed description of the 
results is given in Table 5.

Name of Dataset Type of Data Train Accuracy Test Accuracy Train Loss Test Loss

RAVDESS
Audio 91.11 94.66 0.193 0.1644
Video 95.92 95.82 0.1676 0.1632

Multi Modal 90.87 94.36 0.2392 0.15

CREMAD
Audio 74.77 79.45 0.8334 0.6071
Video 94.31 96.62 0.2088 0.1644

Multi Modal 65.74 70.14 0.7607 0.6333

Table 5: Accuracy and Loss of RAVDESS and CREMAD Datasets on different Types of Data in the Dataset.

The Table 5 presents detailed performance metrics 
for two datasets, RAVDESS and CREMAD, across different 
modalities such as audio, video, and a combination of 
both (multi-modal). For the RAVDESS dataset, in the audio 
modality, the training accuracy is 91.11%, the test accuracy is 
94.66%, the training loss is 0.1930, and the test loss is 0.1644. 
In the video modality, the corresponding values are 95.92%, 
95.82%, 0.1676, and 0.1632. The multi-modal results for 
RAVDESS show a training accuracy of 90.87%, a test accuracy 
of 94.36%, a training loss of 0.2392, and a test loss of 0.1500. 
Moving to the CREMAD dataset, the audio modality exhibits 
a training accuracy of 74.77%, a test accuracy of 79.45%, 
a training loss of 0.8334, and a test loss of 0.6071. In the 
video modality, the metrics are 94.31%, 96.62%, 0.2088, and 
0.1644, while the multi-modal results are 65.74%, 70.14%, 
0.7607, and 0.6333. These values provide a comprehensive 
overview of the model’s performance on different datasets 
and modalities, serving as a valuable resource for evaluating 
and comparing. The effectiveness of the implemented models.

Figure 3a: Training and Testing Loss of Audio Data in 
RAVDESS Dataset.

Figure 3b: Training and Testing Accuracy of Audio Data in 
RAVDESS Dataset.

Figure 3c: Training and Testing Accuracy of Video Data in 
RAVDESS Dataset.
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Figure 3d: Training and Testing Loss of Video Data in 
RAVDESS Dataset.

Figure 3e: Training and Testing Loss of Multi Modal Data 
in RAVDESS Dataset.

Figure 3f: Training and Testing Accuracy of Multi Modal 
Data in RAVDESS Dataset.

Figure 4a: Training and Testing Loss of Audio Data in 
CREMAD Dataset.

Figure 4b: Training and Testing Accuracy of Audio Data in 
CREMAD Dataset.

Figure 4c: Training and Testing Loss of Video Data in 
CREMAD Dataset.
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Figure 4d: Training and Testing Accuracy of Video Data in 
CREMAD Dataset.

Figure 4e: Training and Testing Loss of Multi Modal Data 
in CREMAD Dataset.

Figure 4f: Training and Testing Accuracy of Multi Modal 
Data in CREMAD Dataset.

Figures 5a & b represent the confusion matrix/
classification report of how the classes are classified during 
the testing phase on audio data of the RAVDESS and CREMAD 
datasets. The detailed description of various emotions and 
their respective performance measure values of RAVDESS 
and CREMAD audio data is given in Table 5. The table 
presents a performance evaluation of emotion classification 
on two datasets, RAVDESS and CREMAD, using various 
performance metrics such as precision, recall, and F1-score 
for different emotions. The “Name of the Dataset” column 
specifies the dataset under consideration, while the “Type 
of Emotion” column lists the specific emotions analysed. 
For the RAVDESS dataset, the precision values range from 
0.92 to 0.99, recall values range from Table 6 (0.91 to 
0.97), and F1-scores range from 0.92 to 0.97. The support 
column indicates the number of instances for each emotion. 
Similarly, for the CREMAD dataset, precision values vary 
from 0.73 to 0.94, recall values range from 0.73 to 0.87, and 
F1-scores range from 0.78 to 0.90. The results showcase 
the model’s effectiveness in distinguishing emotions within 
each dataset, providing insights into the classification 
performance for different emotional states. The precision 
metric indicates the accuracy of positive predictions, while 
recall measures the ability to capture all relevant instances, 
and the F1-score is a harmonic mean of precision and recall. 
These metrics collectively offer a comprehensive evaluation 
of the emotion classification model’s performance on the 
given datasets.

Figure 5a: Confusion Matrix/Classification Report of 
RAVDESS Dataset Audio Data.
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Figure 5b: Confusion Matrix/Classification Report of CREMAD Dataset Audio Data.

Name of the Dataset Type of Emotion
Performance Metrics

Precision recall f1-score Support

RAVDESS

Angry 0.97 0.96 0.97 564
Calm 0.96 0.96 0.96 516

Disgust 0.99 0.91 0.94 580
Fear 0.94 0.97 0.96 644

Happy 0.93 0.97 0.96 592
Neutral 0.94 0.94 0.92 332

Sad 0.95 0.91 0.94 568
Surprise 0.92 0.94 0.96 524

CREMAD

Angry 0.94 0.87 0.9 774
Disgust 0.75 0.82 0.78 726

Fear 0.82 0.73 0.78 748
Happy 0.81 0.81 0.81 812
Neutral 0.73 0.85 0.78 616

Sad 0.79 0.76 0.78 790
Table 6: Performance Metrics of RAVDESS and CREMAD Datasets on Audio Data.

Figures 6a & b present below represent the confusion 
matrix/classification report of how the classes are classified 
during the testing phase on video data of the RAVDESS 
and CREMAD datasets. The detailed description of various 
emotions and their respective performance measure values 
of RAVDESS and CREMAD video data is given in Table 7. The 
table provides a detailed performance evaluation of emotion 
recognition using two datasets, RAVDESS and CREMAD, across 
various emotions. For RAVDESS, the emotions evaluated 
include Angry, Disgust, Fear, Happy, Neutral, and Sad, while 

CREMAD encompasses Angry, Disgust, Fear, Happy, Neutral, 
and Sad as well. The performance metrics considered are 
Precision, Recall, and F1-score, along with the Support value, 
indicating the number of instances for each emotion in the 
dataset. For RAVDESS, the precision scores range from 0.98 to 
0.99, recall scores from 0.96 to 0.98, and F1-scores from 0.97 
to 0.98. The Support values vary for each emotion, reflecting 
the dataset’s diversity. Similarly, for CREMAD, precision 
ranges from 0.96 to 0.99, recall from 0.97 to 0.98, and F1-
score from 0.96 to 0.98. The Support values again vary across 
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emotions. The results suggest high overall performance in 
emotion recognition for both datasets, with slight variations 
in performance metrics among different emotions. These 
metrics provide a comprehensive understanding of the 

models’ ability to correctly identify specific emotions within 
each dataset, aiding in the assessment and improvement of 
emotion recognition systems.

Figure 6a: Confusion Matrix/Classification Report of RAVDESS Dataset Video Data.

Figure 6b: Confusion Matrix/Classification Report of CREMAD Dataset Video Data.
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Name of the Dataset Type of Emotion
Performance Metrics

Precision recall f1-score Support

RAVDESS

Angry 0.99 0.97 0.97 1028
Disgust 0.98 0.98 0.98 1012

Fear 0.99 0.98 0.98 1075
Happy 0.98 0.98 0.98 940

Neutral 0.98 0.97 0.97 1082
Sad 0.98 0.96 0.97 842

CREMAD

Angry 0.99 0.97 0.98 1068
Disgust 0.97 0.98 0.97 1031

Fear 0.98 0.97 0.96 1084
Happy 0.99 0.97 0.98 987
Neutral 0.97 0.98 0.97 1108

Sad 0.96 0.97 0.98 884
Table 7: Performance Metrics of RAVDESS and CREMAD Datasets on Video Data.

A multi-modal dataset has been obtained by combing the 
features of audio and video by using the feature level fusion 
techniques described in the feature level fusion section of the 
proposed method on the RAVDESS and CREMAD datasets. 
Figures 7a & b give the classification report/confusion 
matrix obtained from the proposed CNN architecture during 
the evaluation stage. The classification report shows how the 
six classes, namely angry, disgust, fear, happy, neutral, and 
sad, are properly classified during their test by the proposed 
CNN architecture. The detailed description of the results 
is explained in Table 8. The table presents performance 
metrics for emotion recognition on two datasets: RAVDESS 
and CREMAD. The first dataset, RAVDESS, is evaluated for 
six emotions: Angry, Disgust, Fear, Happy, Neutral, and Sad. 
Precision, recall, and f1-score are reported for each emotion, 
along with the corresponding support values. RAVDESS 
achieves high performance across emotions, with particularly 

notable precision and f1-score scores for Angry (0.97 and 
0.97, respectively) and Neutral (0.99 and 0.96, respectively). 
Disgust and Sad also demonstrate strong performance, 
though Disgust exhibits a slightly lower precision of 0.90. 
The second dataset, CREMAD, is assessed for the same set 
of emotions using the same metrics. However, CREMAD 
generally exhibits lower performance compared to RAVDESS. 
Notably, the precision for Angry in CREMAD is considerably 
lower at 0.56, indicating a higher rate of false positives. 
Additionally, Sad has a lower f1-score of 0.60. The variations 
in performance between the two datasets underscore the 
importance of dataset selection in emotion recognition tasks, 
as different datasets may pose unique challenges that impact 
model performance. Further analysis and consideration 
of factors influencing these results would be necessary for 
a comprehensive understanding of the effectiveness of 
emotion recognition models on these datasets.

Figure 7a: Confusion Matrix/Classification Report of RAVDESS Dataset on Multimodal Data.
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Figure 7b: Confusion Matrix/Classification Report of CREMAD Dataset on Multimodal Data.

Name of the Dataset Type of Emotion
Performance Metrics

Precision recall f1-score Support

RAVDESS

Angry 0.97 0.97 0.97 1601
Disgust 0.9 0.95 0.93 1698

Fear 0.96 0.92 0.94 1561
Happy 0.97 0.92 0.94 1688

Neutral 0.99 0.94 0.96 1523
Sad 0.89 0.96 0.92 1607

CREMAD

Angry 0.56 0.26 0.36 2917
Disgust 0.8 0.76 0.78 2836

Fear 0.9 0.76 0.82 2891
Happy 0.75 0.77 0.76 2621

Neutral 0.8 0.88 0.84 2821
Sad 0.48 0.79 0.6 2817

Table 8: Performance Metrics of RAVDESS and CREMAD Datasets on Multimodal Data.

A detailed description of the macro average and 
weighted average accuracies Precision, recall, f1-score and 
support of RAVDESS and CREMAD datasets in all the three 
modes (audio, video, and multimoded) are given in Table 
9. The table presents performance metrics for emotion 
recognition models trained on two different datasets- 
RAVDESS and CREMAD across three types of data: Audio, 
Video, and Multimodal (a combination of both audio and 
video). For the RAVDESS dataset, the models achieved 
high macro average accuracy for all three data types, with 
scores ranging from 0.94 to 0.96. Specifically, in the Audio 
category, precision, recall, and f1-score were 0.95, 0.94, and 
0.95, respectively, with a support of 1080 instances. The 

Video and Multimodal categories demonstrated similarly 
impressive results. Moving on to the CREMAD dataset, the 
models performed well but generally exhibited lower scores 
compared to RAVDESS. In the Audio category, precision, 
recall, and f1-score were 0.79, 0.79, and 0.78, with a support 
of 4466 instances. Video and Multimodal categories showed 
higher precision, recall, and f1-score values, with weighted 
averages consistently outperforming macro averages. This 
table provides a comprehensive overview of the model’s 
classification accuracy across different datasets and 
modalities, aiding in the assessment of their effectiveness in 
emotion recognition tasks.
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Name of the 
Dataset Type of Data

Macro Average Accuracy Weighted Average Accuracy
Precision recall f1- score support Precision recall f1- score support

RAVDESS
Audio 0.95 0.94 0.95 1080 0.94 0.94 0.94 1080
Video 0.96 0.95 0.96 9292 0.95 0.95 0.95 9232

Multimodal 0.95 0.94 0.94 9678 0.94 0.94 0.94 9678

CREMAD
Audio 0.79 0.79 0.78 4466 0.8 0.79 0.8 4466
Video 0.95 0.96 0.95 12642 0.97 0.96 0.96 12642

Multimodal 0.72 0.7 0.69 16903 0.72 0.7 0.69 16903

Table 9: Macro Average and Weighted Accuracies of performance metrices in different modes on RAVDESS and CREMAD datasets.

Conclusion

In conclusion, this research paper introduces a novel 
multimodal system named DV EmotionNet for emotion 
recognition, leveraging both audio and video information 
to enhance the accuracy of emotion classification. The DV 
EmotionNet approach involves extracting audio features 
through the Mel-Frequency Cepstral Coefficients (MFCC) 
technique and converting videos into images stored in a 
spatial-temporal space, with image features extracted using 
a gaussian weighted function. The Multimodal Fusion and 
Attention (MFA) technique is employed to merge audio 
and video features, and the resulting integrated features 
are utilized for training and evaluating the FERCNN Model. 
The experiments conducted on the RAVDESS and CREMAD 
datasets, comprising audio and video data, demonstrate the 
effectiveness of the proposed approach. Upon examining 
Table 8, it is also evident that the multimodal approach 
yields notable improvements in emotion recognition 
accuracy compared to unimodal approaches. Specifically, the 
macro and weighted average accuracy scores across various 
metrics for both RAVDESS and CREMAD datasets consistently 
outperform the individual audio and video modalities. The 
ability of the multimodal system to capture complementary 
information from both audio and visual cues contributes to 
its superior performance. This underscores the importance of 
incorporating multiple modalities for a more comprehensive 
understanding of emotional expressions. Moreover, the DV 
EmotionNet, combining the MFA fusion technique and the 
FERCNN Model, demonstrates robust performance across 
diverse datasets, highlighting its potential applicability 
in real-world scenarios requiring accurate emotion 
recognition. This research not only advances the field of 
emotion recognition but also emphasizes the significance 
of multimodal approaches in enhancing the reliability and 
versatility of such systems. Furthermore, we plan to explore 
this work on DV EmotionNet further by entertaining and 
developing the possibility of real- time detection applications 
that can contribute to a variety of fields in general and 
criminology in particular.
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