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Editorial 

     Advances in technologies and screening have 
dramatically increased the incidence of breast cancer, 
with the staggering 30 percent increase during the past 
30 years [1,2]. This increase is largely attributed to a 
remarkable 7 fold increase in the incidence of 
premalignant forms [3] that now account for over 25% of 
all breast cancers detected [4,5]. Premalignant forms are 
the direct precursors of invasive breast cancers [6], but 
are yet poorly understood [7]. While most changes in 
oncogenic gene expression occur during normal to 
premalignant progression [8], only a half the 
premalignant forms progress to invasive breast cancers, 
while the other half remain as benign lesions. However, 
there is no clear clue of how to distinguish those 
becoming invasive from the others that do not [7]. Such 
uncertainties contribute to the yet slow improvement in 
the treatment of the premalignant forms and, thus, breast 
cancer patients’ survival [6]. Better understanding the 
etiology of premalignant forms (tumor initiation process) 
is a key to radically improving breast cancer treatment.  
 
     Despite yet immature understanding of the tumor 
initiation process, recent studies have unveiled that one of 
the major drivers of breast tumor initiation is the stiffer 
extracellular matrix (ECM). The ECM is a collection of 
substances secreted from cells serving as the structural 
and mechanical support of the tissue. In normal tissues, 
ECM regulates morphogenesis of the epithelia and 
homeostasis of the microenvironment while restraining 
tumorigenesis [9]. In premalignant and malignant lesions, 
however, the ECM has become stiffer [10], perturbing 
tissue structures and transforming cells [11]. ECM 

stiffening is caused by activation of fibrogenic signals, 
including TGF and collagen (COL) cross-linkers: lysyl 
oxidase (LOX) and tissue transglutaminase (tTG). These 
fibrogenic factors increase COL deposition through its 
higher biosynthesis, cross-linking and myofibroblast 
differentiation producing more COL [10]. However, it not 
fully understood what liberates these fibrogenic signals to 
induce tumor initiation, while they are subdued in normal 
tissues. Addressing this issue is critical to better 
understand the causes of ECM stiffening. 
 
     Our laboratory is testing our hypothesis that nitric 
oxide (NO) plays a key role in the homeostasis of the 
normal breast tissue, whereas reduction of NO liberates 
fibrogenic signals to induce breast tumor initiation. NO is 
a reactive gas produced by NO synthases (NOS 1-3) in 
response to stress and exerts pleiotropic functions in 
diverse tissues, especially in neurons, muscles, endothelia 
and immune cells [12]. NOS-1 and -3 are expressed 
constitutively, while their activities are regulated by 
phosphorylation, S-nitrosylation, protein interaction and 
cofactor/substrate availability. Conversely, NOS-2 
expression is regulated inducibly [13]. NO covalently 
binds cysteines (S-nitrosylation), heme groups (metal 
nitrosylation) or tyrosines (nitration) of proteins to 
regulate their structures and functions. NO binding to the 
heme group of soluble guanylyl cyclase (sGC) activates its 
catalytic activity that converts GTP to cGMP. This 
activates cGMP-dependent protein kinase (PKG), which 
lowers cellular potassium and calcium ions to 
hyperpolarize the membrane potential while activating 
RhoA kinase to suppress contractility [13]. Furthermore 
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NO S-nitrosylates over 3000 different proteins [14] to 
regulate their functions. S-nitrosylation protects proteins 
from ROS-mediated oxidation [sulfonic acid (RSO3H)] [15] 
and facilitates disulfide bond formation [16]. (Very high 
levels of ROS and NO, however, could form peroxynitrite 
(ONOO-) that damages tissues [17]). In addition, S-
nitrosylation triggers structural change of proteins [18], 
enabling their further post-translational modifications 
such as phosphorylation [19,20], acetylation and 
ubiquitination [14].  
 
     It has been long known that NO regulates 
morphogenesis of diverse organisms from invertebrates 
to rodents [21,22]. NO controls polarity formation by 
negatively regulating cell division and movement through 
suppression of RhoA via S-nitrosylation [23]. In addition, 
NO regulates cell-cell junctions, where NOS is associated 
with tight junction proteins (e.g., occludin) [24]. NOS-1 
and -3 are part of complexes involved in mechano- 
transduction of neurons and vasculatures, respectively 
[25,26], which is closely linked to morphogenesis [27]. In 
particular, NOS-1 interacts with the polarity proteins 
Scribble and DLG4 [28,29], which co-localize with and 
stabilize adherens junctions [30,31]. NO plays specific 
roles in the breast. Increased amount of NO is produced 
by the postpartum mammary gland [32], which promotes 
blood flow and nutrient uptake of lactating mammary 
glands [33] while being also secreted into the breast milk 
as an essential component for the neonatal growth [34]. 
In fact, NOS-1 level is elevated in mammary glands during 
pregnancy [35]. Further, we found that normal virgin 
mammary glands produce increased level of NO and that 
such an increase in NO level is required for proper 
mammary morphogenesis during puberty and 
establishment of ECM components (manuscript 
submitted). Conversely, we found that the inhibition of 
NO production impairs mammary gland development and 
induces ECM stiffening and premalignant lesions 
(manuscript submitted). NO production is reduced in 
many chronic disorders (obesity, diabetes and 
hypertension) due to oxidative depletion of the NOS 
cofactor, tetrahydrobiopterin (BH4) [36], leading to ECM 
fibrosis and stiffening [37] that increase cancer risks of 
the patients [38]. A similar mechanism might function (for 
reducing NO production) to initiate breast tumor. 
 
     Despite such a critical role of NO in normal tissue 
development, there has been a wide-spread controversy 
over NO’s biphasic [pro- vs. anti-tumor] roles in cancer 
biology [39-42]. For example, NOS-2 level is elevated in 
advanced cancers [43], whereas its gene knockout 
exacerbates tumor incidence in tumor-prone animals 

[44]. Such a contradiction has recently been attributed to 
a pro- or anti-tumor action of NO depending on the dose 
and context [45]. At a lower dose (<200 nM), NO is pro-
tumoral, activating ERK, AKT, MMP9 and HIF1, whereas 
at a higher dose (>200 nM) NO is anti-tumoral, activating 
the p53 pathway [46]. NO level can be controlled by the 
substrate and cofactor availability [36], but not by the 
NOS level, against most NO studies. Using cell lines of 
breast cancer progression series, we have recently found 
that NO level declines during the normal to premalignant 
progression and remains low in the low grade tumor cells. 
However, NO level again increases in the metastatic 
breast tumor cells (unpublished data). Such a biphasic 
expression pattern of NO during breast cancer 
progression suggests its dual roles as a tumor suppressor 
and promotor depending on the context, in a manner 
similar to TGF [47]. We hope that our study will at least 
clarify the role of NO in breast tumor initiation. 
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