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Abstract

Atherosclerosis has been regarded as an inflammatory disease. The vascular endothelium is considered as having multiple 
functions, regulating vascular tone, thrombosis, haematosis, permeability and cell adhesion. The emergence of microRNAs 
(miRNAs) as significant regulators of pathophysiological processes has indicated novel molecular insights and provided new 
therapeutic targets in atherosclerotic condition. Many studies have revealed that miRNA are associated with cardiovascular 
disease (CVD). With respect to miR-92a, miR -92a, a member of the miR-17 to miR-92 cluster, is expressed highly in endothelial 
cells (ECs) and regulated by shear stress. Both In vitro and vivo, miR-92a expression is highly induced in atheroprone regions 
compared with atheroresistant regions under disturbed flow (d-flow) condition. The clinical and experimental studies 
have suggested that inhibition of miR-92a can contribute to the improvement of endothelial dysfunction, inflammation, and 
oxidative stress in atherosclerosis. Recent reports showed that antimiR-92a as novel therapeutic options can be attributed to 
the endothelial cell autophagy and cardiomyocyte metabolism and that mechanistically, atherosclerotic status promote the 
packaging of functional miR-92a-3p into endothelial microvesicles, thereby promoting angiogenic response into recipient 
endothelial cells. It is strongly suggested that miR-92a-3p, having novel biological function and mechanism is a potent 
therapeutic target in atherosclerosis-related diseases. It is putative that flow-mediated vasodilation (FMD) study, early 
surrogate marker of endothelial function may in part reflect miR-92a, multifunctional biomarker. 
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Introduction

The vascular endothelium is considered as having 
multiple functions, regulating vascular tone, thrombosis, 
haematosis, permeability and cell adhesion [1]. The 
emergence of microRNAs (miRNA) as significant regulators 
of pathophysiological processes has indicated novel 
molecular insights and provided new therapeutic strategies 
in atherosclerotic status [2]. In clinical and experimental 
studies, inhibition of miR-92a can contribute to the 
improvement of endothelial dysfunction, inflammation, and 

oxidative stress in atherosclerosis [3,4]. The novel biological 
functions of miR-92a-3p on endothelial cell autophagy and 
cardiomyocyte metabolism have been demonstrated by 
analyzing the cell type-specific response to miR-92a-3p 
inhibition [5]. A recent report provided that mechanistically, 
the clinical and experimental atherosclerotic status can 
promote the packaging of functional miR-92a-3p into 
endothelial microvesicles (EMVs) thereby promoting 
angiogenic response in the recipient endothelial cells by 
a STAT3 (signal transducer and activator of transcription 
3)-THBS1 (thrombospondin 1) -dependent manner [6]. 
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Chang et al. [7] have also revealed that extracellular miR-
92a mediate endothelial cell-macrophage communication. 
In addition, the relationship between FMD examination, 
early surrogate marker of endothelial dysfunction and miR-
92a, gene expression has been identified [8,9]. The current 
knowledges of miR-92a, so-called flow-sensitive microRNA 
(mechano-miR) [10,11] and/or atheromiR [3] which have the 
novel biological function and mechanism will be reviewed in 
this article.

Endothelial Dysfunction in Atherosclerosis

Endothelial dysfunction was first indicated in essential 
hypertension in the forearm vasculature [12] and has been 
well characterized in the pathophysiological process of 
numerous other forms of cardiovascular disease (CVD) such 
as both hereditary and acquired dyslipidemia, coronary 
artery disease (CAD), congestive heart failure (CHF) and 
peripheral artery disease. Endothelial dysfunction has been 
also associated with smoking, type 1 and type 2 diabetes and 
obesity in patients without overt CVD [1]. Flow-mediated 
vasodilation (FMD) and nitroglycerin-mediated vasodilation 
(NMD) in the brachial artery is a potent procedure for 
estimating vascular endothelial and vascular smooth muscle 
cell (VSMC) function [13]. FMD and NMD examinations are 
useful tool of the vascular reactivity. The author has reported 
some studies on FMD and NMD including migraine, CVD, 
chronic kidney disease (CKD) and dyslipidema [14-18]. 
The vascular endothelium is considered as having multiple 
functions, regulating vascular tone, thrombosis, haematosis, 
permeability and cell adhesion. Vasodilatory substances 
including nitric oxide (NO), prostacycrin, C-type natriuretic 
peptide and endothelium-derived hyperporlarization factors 
(EDHF), as well as vasoconstrictions such as endothelin-1 
(ET-1), angiotensin II (Ang II) and thromboxane A2 were 
released from endothelium [1,12]. Endothelial dysfunction, 
namely, endothelial activation is regarded as an important 
initiation process in atherosclerotic condition and also 
contribute to arteriosclerosis, so-called arterial stiffening.

MicroRNA in Atherosclerosis

MicroRNAs (miRNAs) were first identified in 
Caenorhabditis elegans [19]. MiRNAs are evolutionarily 
conserved, small, single-stranded noncoding RNAs that 
regulate gene expression at the post-transcriptional level 
typically binding to the 3’-untranslated region (UTR) of 
specific target mRNA sequences [2,20-25]. Feinberg et al. 
[2] described that the emergence of miRNAs as an important 
regulators of pathophysiological processes has indicated 
novel molecular insights and provided new therapeutic 
strategies in atherosclerotic status. Numerous studies 
have revealed that miRNA are associated with diseases 
such as CVD [26], kidney disease [27], liver disease [28], 

autoimmune disease [29] and cancer [30]. Atherosclerotic 
changes mainly occur at arterial branch points, bifurcations, 
and lesser curvature of the aorta in mice and human [31]. 
These findings are recognized, partially, under disturbed 
flow (d-flow) condition in these regions, which increases 
endothelial permeability and pro-inflammatory signaling. 
While, anti-inflammatory, anti-adhesive and antithrombotic 
properties occur under the laminar flow (l-flow) state 
in the vessel wall. A large number of miRNAs have been 
demonstrated as shear stress response under either d-flow 
or l-flow condition [2]. With respect to miR-92a, miR -92a, a 
member of the miR-17 to miR-92 cluster, is expressed highly 
in endothelial cells and regulated by shear stress [3,32]. In 
vitro condition, the exposing of endothelial cells to laminar 
flow (l-flow) decreased miR-92a expression. While disturbed 
flow (d-flow) increases its expression. In vivo status, miR-
92a expression is also highly activated in atheroprone areas 
compared with atheroresistant regions [33]. 

The evidence that endothelial microRNAs (miRNAs) 
regulate vascular inflammation has been indicated. In 
response to biochemical and biomechanical stimuli, miRNAs 
regulate specific targets in endothelial cells that change the 
balance of pro- or anti-inflammatory signaling pathways. 
With regard to miR-92a, it targets the transcription factors 
Kruppel-like factor 2 (KLF2) and 4 (KLF4), and suppressor 
of cytokine signaling 5 (SOCS5) expression and increase 
monocyte chemoattractant protein (MCP)-1 and interleukin 
(IL)-6 [2]. Overexpression of miR-92a in endothelial cells 
decreased KLF2 and KLF4 expression, which are flow-
responsive transcription factors. In contract, miR-92a 
antagonism decreased endothelial cell inflammation [3]. 
According to Loyer’s report, miR-92a mechanistically, targets 
SOCS5 in endothelial cells under oxidized low-density 
lipoprotein (ox LDL) and low share stress status [3].

Flow-Sensitive MicroRNAs (Mechano-miRs) 

Disturbed flow occurs in branched or curved arteries 
and has the characteristic of low-magnitude and oscillatory 
shear stress. While, laminar flow (stable flow) occurs in 
straight sections of the vasculature and has the aspect of high- 
magnitude and laminar shear stress which remain heathy 
[10]. Kumar et al. [10] mentioned that atherosclerosis occurs 
in arterial regions under disturbed flow condition, partially 
caused by changings in gene expression. MiRNAs are small, 
noncoding genes that post-transcriptionally regulate gene 
expression by targeting messenger RNA transcripts. MiRNAs 
including miR-10a, miR-19a, miR-23b, miR-17-92, miR-21, 
miR-663, miR-92a, miR143/145, miR-101, miR-126, miR-
712, miR-205, and miR-155 have been recognized as flow-
sensitive microRNAs (mechano-miRs). MiR -92a is one of 
the flow-sensitive miRNA, so-called mechano-miRs, regulate 
endothelial gene expression, endothelial dysfunction, and 
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atherosclerotic condition. The key signaling pathways that 
are targeted by these flow-sensitive microRNAs include 
the endothelial cell cycle, inflammation, apoptosis, and NO 
signaling [10]. Furthermore, Kumar et al. [11] also studied 
the role of flow-sensitive microRNAs and long noncoding 
RNAs (lncRNAs) in vascular dysfunction and atherosclerosis. 
They focused on multiple flow-sensitive miRNAs such as, 
miR-10a, -19a, -23b, -17＾92, -21, -663, -92a, -143/145, 
-101, -126, -712, -205, and -155 that play an important role 
of the endothelial function in atherosclerosis by targeting 
inflammation, cell cycle, proliferation, migration, apoptosis, 
and NO signaling [11]. They have discussed the flow-sensitive 
lncRNA STEEL along with other lncRNAs [11]. 

MiR-92a as Multifunctional Biomarker in 
Atherosclerosis

Loyer et al. [3] mentioned that microRNA, selectively 
regulated by ox LDL and share stress are called as atheromiRs. 
They identified miR-92a as an atheromiR and SOCS5 as 
novel miR-92a target [3]. They suggested that increased 
miR-92a expression and proinflammatory markers are 
recognized under the exposure condition of endothelial cells 
to oxidized LDL and low share stress [3]. Furthermore, they 
demonstrated that inhibition of microRNA-92a prevents 
endothelial dysfunction and atherosclerosis in mice. MiR-
92a is a member of the miR-17-92 cluster, having numerous 
effects on the cardiovascular disease. Inhibition of miR-92a 
improves neovasculization after myocardial or hind limb 
ischemia [34]. Hinkel et al. [35] suggested that inhibition 
of microRNA-92a protected against ischemia/reperfusion 
injury in a large-animal study. In addition, several studies 
both in vitro and vivo [4,32,36] also have indicated a 
vasculoprotective effect for miR-92a inhibition. Daniel et al. 
indicated that inhibition of endothelial miR-92a improves 
re-endothelialization and prevents neointima lesion 
after vascular injury [4]. These evidences have provided 
endothelial and cardioprotective effects of genetic inhibition 
of miR-92a. MiR-92a-3p has many targets including KLF2, 
KLF4 [32,37], the fibronectin adhesion molecule integrin α5 
(ITGA5), SOCS5, and SIRT1 [5,38]. Recently, Rogg et al. [5] 
indicated that inhibition of miR-92a-3p regulates endothelial 
cell autophagy through Atg4a and cardiomyocyte metabolic 
switching through Abca8b and Cd36 regulation. Rogg et 
al. [5] studied miR target regulation using miR-92a-3p 
and suggested that miRs have cell type-specific effects in 
vivo. A novel function of miR-92a-3p in endothelial cell 
autophagy and cardiomyocyte metabolism was discovered 
by analysis of miR-92a targets in cell subtypes. Gou et al. 
[39] also suggested that miR-92a overexpression reduces 
endothelial function and suppresses heme oxygenase-1 (HO-
1) expression, namely, a critical cytoprotective enzyme, in 
endothelial cells. They demonstrated that inhibition of miR-
92a suppresses oxidative stress and improves endothelial 

function by upregulating HO-1 in db/db mice. While, 
extracellular vesicles (EVs) are emerging as important 
regulators of vascular homeostasis and cardiovascular 
disease progression [6]. Atherosclerotic stimulation such as 
oxLDL or IL-6, increase miR-92a-3p expression in endothelial 
cells, as well as in corresponding endothelial microvesicles 
in vitro [6]. Liu et al. [6] demonstrated that clinical and 
experimental atherosclerotic conditions such as oxLDL and 
IL-6 can promote the packaging of functional miR-92a-3p 
into endothelial microvesicles, thereby promoting angiogenic 
responses in the recipient endothelial cells in a STAT3-
THBS1- dependent manner [6]. Chang et al. [7] suggested 
that miR-92a exerts its effects on physiological responses 
in a novel biological manner. They have demonstrated that 
miR-92a-containing extracellular vesicles from endothelial 
cells modulate macrophage functions and phenotypes [6].

Inverse Correlation between MiR-92a 
Expression and FMD Study

Endothelial innate immunity has emerged as a significant 
mechanism underlying the interaction among oxidative stress 
condition, inflammation status, and endothelial dysfunction. 
Chen et al. [8] reported that miR-92a is inversely correlated 
with endothelial function assessed by FMD study and is 
positively correlated with serum interleukin-1β in patient 
with CAD. They suggested that sterol regulatory element-
binding protein 2 (SREBP2) –miR-92a-inflammasome 
exacerbates endothelial dysfunction under oxidative stress 
condition. The miR-17-92 cluster is upregulated by c-Myc 
and NF-κB in cancer cells, fibroblasts, and epithelial cells 
[40,41]. They think that oxidative stress activates SREBP2 
and miR-92a, in turn inducing innate immunity reaction and 
leading to endothelial dysfunction [8]. Finally, the reports 
[8,9] indicated the significant relationship between miR-92a 
and FMD study, showing close relation vascular reactivity and 
gene expression, thereby it is putative that FMD examination 
may partially reflect miR-92a expression. 

In summary, the clinical and experimental studies have 
suggested that inhibition of miR-92a can contribute to the 
improvement of endothelial dysfunction, inflammation, and 
oxidative stress in atherosclerosis. The current knowledges 
indicated that miR-92a-3p can be attributed to the new 
novel biological function and mechanism in endothelial 
autophagy, cardiomyocyte metabolism, and angiogenesis 
and that antimiR-92a-3p treatment can also contribute to 
the new therapeutic strategies in atherosclerotic condition. 
It is strongly suggested that miR-92a-3p, having pleiotropic 
manner is a potent therapeutic target in atherosclerosis-
related disease. The author will also suggest that it is 
plausible that FMD study, early endothelial surrogate marker 
may in part reflect miR-92a, multifunctional biomarker.
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Conclusion 

The author strongly suggests that miR-92a-3p, having 
pleiotropic manner is a potential therapeutic target in 
atherosclerosis-related diseases.

The author will also suggest that it is putative that flow-
mediated vasodilation study, early endothelial surrogate 
marker may partially reflect miR-92a, multifunctional 
biomarker.
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