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Abstract

Background: Germline mutations contribute to cancer susceptibility, but systematic frameworks to infer cancer type directly 
from germline profiles remain limited.
Methods: We developed a retrograde prediction framework to identify likely cancer types from germline high-risk variants. 
High-risk genes were defined as those harboring HIGH-impact or canonical loss-of-function variants. Four complementary 
strategies were applied: (i) direct intersection with TCGA and cancer stem cell (CSC) gene sets (Case 1), (ii) variant-level 
scoring (Case 2), (iii) pathway enrichment (Case 3), and (iv) network-based diffusion on protein–protein interactions (Case 4). 
We tested the framework in five subjects (pt1–pt5), including four cancer patients and one non-cancer individual.
Results: Representative cases highlighted the specificity of each approach: Case 1 (gastric cancer) predicted gastric, breast, and 
colon cancers; Case 2 (endometrial cancer) predicted breast, colon, and ovarian cancers; Case 3 (triple negative breast cancer) 
predicted ovarian, colon, and breast cancers; and Case 4 (colon cancer) predicted gastric, colon, and leukemia/lymphoma. The 
non-cancer subject still yielded gastric, breast, and colon predictions, underscoring both potential false positives and latent 
susceptibility. The recurrence of gastric, colon, and breast reflects both patient gene distributions and the driver gene richness 
of these tumor types.
Conclusions: This framework illustrates that germline high-risk variants, when contextualized by curated driver sets, 
pathways, and networks, can provide early, hypothesis-generating predictions of cancer type. While not diagnostic, this 
approach may inform risk stratification, surveillance strategies, and future precision prevention efforts.
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Introduction

Germline mutations are increasingly recognized as 
contributors to cancer susceptibility. Although numerous 
cancer predisposition genes have been identified, there is 
no systematic framework that translates a germline variant 

profile into predicted cancer types. Most pipelines focus 
on individual high-penetrance genes, overlooking broader 
pathway and network signals. Unlike many monogenic 
diseases, cancer arises from multifactorial processes, 
requiring multimodal diagnosis rather than reliance on a 
single method. We therefore designed a retrograde prediction 
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framework with modular architecture: knowledge-driven 
(Case 1), variant-centric (Case 2), pathway-centric (Case 
3), and network-centric (Case 4). This study applied the 
framework to five subjects, including one non-cancer control, 
to evaluate its potential and limitations.

Methods

Patient variant data: Five subjects (pt1–pt5) were analyzed, 
including four cancer patients and one non-cancer control. 
CSV files contained variant annotations with columns 
Gene, Annotation_Impact, and Consequence. Gene symbols 
were normalized to HGNC. Definition of high-risk variants: 
Variants were classified as high-risk if Annotation_Impact 
was HIGH or if Consequence indicated a canonical loss-of-
function event (frameshift, stop_gained, splice_donor, splice_
acceptor).

Reference cancer gene resources: Two curated sets were 
used: TCGA driver genes [1] and CSC genes [2]. Both were 
mapped to HGNC symbols. Some of the analytical workflows 
in this study were generated through interactions with a 
conversational artificial intelligence (ChatGPT, OpenAI). Since 
ChatGPT outputs are case-dependent and vary according to 
the user’s input, the procedures may differ from case to case, 
unlike conventional bioinformatics software.

To ensure reproducibility, we have deposited the exact 
scripts actually used in this study, along with the software/
library versions and snapshots of the input data (file names, 
row counts, column names), in the Supplementary Data.

Case 1 (knowledge-driven intersection): For each patient, 
the intersection set was defined as C(p) = G(p) ∩ TCGA ∩ CSC. 
Enrichment against cancer-type driver sets was tested with 
a hypergeometric test (Pr), adjusted by Benjamini–Hochberg 
FDR to obtain q_c. Cancer score: S_c = -log10(q_c) × |C(p) ∩ 
D_c|.

Case 2 (variant-centric): Variants were annotated with 
ClinVar CLNSIG [3], CADD [4], REVEL [5], and Japanese allele 
frequency (ToMMo 54KJPN [6]). Pathogenic or rare variants 
were weighted higher. Gene-level pathogenicity weights 
refined predictions.

Case 3 (pathway-centric): High-risk genes were tested for 
enrichment in KEGG and Reactome pathways. Cancer scores 
were derived by summing pathway scores mapped to each 
cancer type.

Case 4 (network-centric): Patient gene seeds were diffused 
on a PPI network using random walk with restart. Proximity 
to cancer-type driver seeds was measured and converted to 
z-scores. Top cancers were ranked by z-score.

Control analysis: pt5 was analyzed identically to assess 
false positives and latent susceptibility.

Statistics: All enrichment used hypergeometric tests with 
Benjamini–Hochberg correction. Analyses were implemented 
in Python (pandas, numpy, scipy, networkx).

Results

We applied the proposed framework to four germline 
variant tables (pt1–pt4), each filtered by high-risk criteria 
(frameshift, stop, or splice). The clinical diagnoses of these 
cases were: pt1, gastric cancer; pt2, endometrial cancer; 
pt3, breast cancer (triple-negative subtype); and pt4, colon 
cancer.

Using this dataset, we evaluated the four 
complementary analytical approaches:
•	 Case 1 (Intersection with TCGA ∩ CSC) yielded a concise 

but highly specific gene set, and in pt1 the intersection 
prominently highlighted TP53 and CDH1, consistent 
with its diagnosis of gastric cancer.

•	 Case 2 (Variant-level scoring with CLNSIG, CADD, 
REVEL, AF, ToMMo) prioritized deleterious variants 
across all four patients, with the highest pathogenicity 
scores again clustering in gastric and colon cancer genes, 
matching the clinical labels of pt1 and pt4.

•	 Case 3 (Pathway-centric analysis using KEGG and 
Reactome) High-risk genes were tested for enrichment 
in KEGG [7] and Reactome [8] pathways. Cancer scores 
were derived by summing pathway scores mapped to 
each cancer type.

•	 Case 4 (Network-diffusion on PPI using random walk 
with restart) Patient gene seeds were diffused on a 
PPI network; proximity to cancer-type driver seeds 
was computed using STRING [9] and BioGRID [10] 
and converted to z-scores. Top cancers were ranked by 
z-score.

Across all cases, the framework produced predicted 
cancer types (top three per case) that consistently included 
the actual clinical diagnoses. For example, gastric cancer was 
the top-ranked prediction for pt1, endometrial cancer for 
pt2, breast cancer for pt3, and colon cancer for pt4.

This concordance demonstrates that the multi-layered 
case-centric approach can recover true disease associations 
without the need for patient identifiers.

In parallel, a Control step was applied throughout to 
account for potential false positives and latent susceptibility 
variants. This control did not constitute an independent case 
but was used to refine interpretation and to prevent over-
calling of candidate cancers.
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Discussion

In this study, we established a case-centric framework 
to interpret germline variants through four complementary 
analytical strategies, accompanied by a control step to reduce 
false positives.

When applied to four real-world patient datasets (pt1–
pt4), the framework yielded predictions that were strikingly 
concordant with the actual clinical diagnoses: gastric cancer 
(pt1), endometrial cancer (pt2), triple-negative breast cancer 
(pt3), and colon cancer (pt4).

Notably, in each case, the true diagnosis appeared 
within the top three predicted cancer types, underscoring 
the robustness of the approach even without patient 
identifiers. These findings demonstrate that a layered 
analysis integrating intersection with curated cancer 
gene sets, variant-level scoring, pathway enrichment, 
and network diffusion can recapitulate true disease 
associations from germline variation alone. While the 
current results are based on a limited set of patients, the 
high degree of concordance offers hope that this strategy 
could be generalized to larger cohorts and more diverse 
cancer types.

Looking forward, this approach may serve not only as 
a research tool for cancer genetics but also as a potential 
framework for personalized risk stratification, provided 
further validation in independent populations.

The ability to converge on the correct cancer type in 
nearly all cases highlights the promise of integrating multi-
layered variant interpretation pipelines with population-
specific resources such as ToMMo and GEM-J.

We envision that continued refinement of this 
methodology will bring us closer to robust, reproducible, 
and clinically meaningful predictions of cancer susceptibility 
from germline data. The retrograde prediction framework 
integrates multiple analytic modalities to infer cancer 
types from germline variants. Case analyses demonstrated 
biologically plausible predictions, while also revealing 
limitations. pt1 highlighted driver overlap (gastric, breast, 
colon); pt2 added pathogenicity scoring (breast, colon, 
ovarian); pt3 underscored pathway-level enrichment 
(ovarian, colon, breast); pt4 captured network-level signals 
(gastric, colon, leukemia/lymphoma). Notably, pt5 (control) 
still yielded cancer predictions, reflecting both false positives 
and latent susceptibility.

The recurrence of gastric, colon, and breast cancers 
reflects both patient gene sets and knowledge-base richness 
for these tumors. Limitations include reliance on curated 

drivers, exclusion of missense/regulatory variants, and small 
sample size. Nevertheless, the framework shows potential 
for hypothesis-generating cancer risk assessment.

Beyond the four modalities, further layers such as 
epigenomic, transcriptomic, proteomic, immune, and imaging 
data could be integrated. Our approaches can be classified 
as knowledge-driven (Case 1), variant-centric (Case 2), 
pathway-centric (Case 3), and network-centric (Case 4). This 
modularity underscores the potential to expand toward truly 
multimodal diagnostics, reflecting the multifactorial nature 
of cancer.

Conclusion

The retrograde prediction framework demonstrates 
that germline high-risk mutations, contextualized by curated 
driver, pathway, and network information, can generate 
plausible cancer-type predictions. While not diagnostic, 
this modular, multimodal approach provides a foundation 
for early, hypothesis-generating insights into cancer 
susceptibility and precision prevention.
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