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Abstract

Background: Germline mutations contribute to cancer susceptibility, but systematic frameworks to infer cancer type directly
from germline profiles remain limited.

Methods: We developed a retrograde prediction framework to identify likely cancer types from germline high-risk variants.
High-risk genes were defined as those harboring HIGH-impact or canonical loss-of-function variants. Four complementary
strategies were applied: (i) direct intersection with TCGA and cancer stem cell (CSC) gene sets (Case 1), (ii) variant-level
scoring (Case 2), (iii) pathway enrichment (Case 3), and (iv) network-based diffusion on protein-protein interactions (Case 4).
We tested the framework in five subjects (pt1-pt5), including four cancer patients and one non-cancer individual.

Results: Representative cases highlighted the specificity of each approach: Case 1 (gastric cancer) predicted gastric, breast, and
colon cancers; Case 2 (endometrial cancer) predicted breast, colon, and ovarian cancers; Case 3 (triple negative breast cancer)
predicted ovarian, colon, and breast cancers; and Case 4 (colon cancer) predicted gastric, colon, and leukemia/lymphoma. The
non-cancer subject still yielded gastric, breast, and colon predictions, underscoring both potential false positives and latent
susceptibility. The recurrence of gastric, colon, and breast reflects both patient gene distributions and the driver gene richness
of these tumor types.

Conclusions: This framework illustrates that germline high-risk variants, when contextualized by curated driver sets,
pathways, and networks, can provide early, hypothesis-generating predictions of cancer type. While not diagnostic, this

approach may inform risk stratification, surveillance strategies, and future precision prevention efforts.
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Introduction profile into predicted cancer types. Most pipelines focus

on individual high-penetrance genes, overlooking broader

Germline mutations are increasingly recognized as pathway and network signals. Unlike many monogenic
contributors to cancer susceptibility. Although numerous diseases, cancer arises from multifactorial processes,
cancer predisposition genes have been identified, there is requiring multimodal diagnosis rather than reliance on a
no systematic framework that translates a germline variant single method. We therefore designed aretrograde prediction
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framework with modular architecture: knowledge-driven
(Case 1), variant-centric (Case 2), pathway-centric (Case
3), and network-centric (Case 4). This study applied the
framework to five subjects, including one non-cancer control,
to evaluate its potential and limitations.

Methods

Patient variant data: Five subjects (pt1-pt5) were analyzed,
including four cancer patients and one non-cancer control.
CSV files contained variant annotations with columns
Gene, Annotation_Impact, and Consequence. Gene symbols
were normalized to HGNC. Definition of high-risk variants:
Variants were classified as high-risk if Annotation_Impact
was HIGH or if Consequence indicated a canonical loss-of-
function event (frameshift, stop_gained, splice_donor, splice_
acceptor).

Reference cancer gene resources: Two curated sets were
used: TCGA driver genes [1] and CSC genes [2]. Both were
mapped to HGNC symbols. Some of the analytical workflows
in this study were generated through interactions with a
conversational artificial intelligence (ChatGPT, OpenAl). Since
ChatGPT outputs are case-dependent and vary according to
the user’s input, the procedures may differ from case to case,
unlike conventional bioinformatics software.

To ensure reproducibility, we have deposited the exact
scripts actually used in this study, along with the software/
library versions and snapshots of the input data (file names,
row counts, column names), in the Supplementary Data.

Case 1 (knowledge-driven intersection): For each patient,
the intersection set was defined as C(p) = G(p) N TCGA n CSC.
Enrichment against cancer-type driver sets was tested with
a hypergeometric test (Pr), adjusted by Benjamini-Hochberg
FDR to obtain g_c. Cancer score: S_c = -log10(q_c) x [C(p) N
D_c|.

Case 2 (variant-centric): Variants were annotated with
ClinVar CLNSIG [3], CADD [4], REVEL [5], and Japanese allele
frequency (ToMMo 54K]JPN [6]). Pathogenic or rare variants
were weighted higher. Gene-level pathogenicity weights
refined predictions.

Case 3 (pathway-centric): High-risk genes were tested for
enrichment in KEGG and Reactome pathways. Cancer scores
were derived by summing pathway scores mapped to each
cancer type.

Case 4 (network-centric): Patient gene seeds were diffused
on a PPI network using random walk with restart. Proximity
to cancer-type driver seeds was measured and converted to
z-scores. Top cancers were ranked by z-score.

Chinami M. Cancer Diagnosis from RNA Sequence of Blood Cells by Using Al ] Cancer Oncol 2025,

9(2): 000201.

Open Access Journal of Cancer & Oncology

Control analysis: pt5 was analyzed identically to assess
false positives and latent susceptibility.

Statistics: All enrichment used hypergeometric tests with
Benjamini-Hochberg correction. Analyses were implemented
in Python (pandas, numpy, scipy, networkx).

Results

We applied the proposed framework to four germline
variant tables (ptl-pt4), each filtered by high-risk criteria
(frameshift, stop, or splice). The clinical diagnoses of these
cases were: ptl, gastric cancer; pt2, endometrial cancer;
pt3, breast cancer (triple-negative subtype); and pt4, colon
cancer.

Using this dataset, we evaluated the four
complementary analytical approaches:

e Case 1 (Intersection with TCGA N CSC) yielded a concise
but highly specific gene set, and in ptl the intersection
prominently highlighted TP53 and CDH1, consistent
with its diagnosis of gastric cancer.

e C(Case 2 (Variant-level scoring with CLNSIG, CADD,
REVEL, AF, ToMMo) prioritized deleterious variants
across all four patients, with the highest pathogenicity
scores again clustering in gastric and colon cancer genes,
matching the clinical labels of pt1 and pt4.

e Case 3 (Pathway-centric analysis using KEGG and
Reactome) High-risk genes were tested for enrichment
in KEGG [7] and Reactome [8] pathways. Cancer scores
were derived by summing pathway scores mapped to
each cancer type.

¢ Case 4 (Network-diffusion on PPI using random walk
with restart) Patient gene seeds were diffused on a
PPl network; proximity to cancer-type driver seeds
was computed using STRING [9] and BioGRID [10]
and converted to z-scores. Top cancers were ranked by
Z-SCore.

Across all cases, the framework produced predicted
cancer types (top three per case) that consistently included
the actual clinical diagnoses. For example, gastric cancer was
the top-ranked prediction for ptl, endometrial cancer for
pt2, breast cancer for pt3, and colon cancer for pt4.

This concordance demonstrates that the multi-layered
case-centric approach can recover true disease associations
without the need for patient identifiers.

In parallel, a Control step was applied throughout to
account for potential false positives and latent susceptibility
variants. This control did not constitute an independent case
but was used to refine interpretation and to prevent over-
calling of candidate cancers.
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Discussion

In this study, we established a case-centric framework
to interpret germline variants through four complementary
analytical strategies, accompanied by a control step to reduce
false positives.

When applied to four real-world patient datasets (ptl-
pt4), the framework yielded predictions that were strikingly
concordant with the actual clinical diagnoses: gastric cancer
(pt1), endometrial cancer (pt2), triple-negative breast cancer
(pt3), and colon cancer (pt4).

Notably, in each case, the true diagnosis appeared
within the top three predicted cancer types, underscoring
the robustness of the approach even without patient
identifiers. These findings demonstrate that a layered
analysis integrating intersection with curated cancer
gene sets, variant-level scoring, pathway enrichment,
and network diffusion can recapitulate true disease
associations from germline variation alone. While the
current results are based on a limited set of patients, the
high degree of concordance offers hope that this strategy
could be generalized to larger cohorts and more diverse
cancer types.

Looking forward, this approach may serve not only as
a research tool for cancer genetics but also as a potential
framework for personalized risk stratification, provided
further validation in independent populations.

The ability to converge on the correct cancer type in
nearly all cases highlights the promise of integrating multi-
layered variant interpretation pipelines with population-
specific resources such as ToMMo and GEM-].

We envision that continued refinement of this
methodology will bring us closer to robust, reproducible,
and clinically meaningful predictions of cancer susceptibility
from germline data. The retrograde prediction framework
integrates multiple analytic modalities to infer cancer
types from germline variants. Case analyses demonstrated
biologically plausible predictions, while also revealing
limitations. ptl highlighted driver overlap (gastric, breast,
colon); pt2 added pathogenicity scoring (breast, colon,
ovarian); pt3 underscored pathway-level enrichment
(ovarian, colon, breast); pt4 captured network-level signals
(gastric, colon, leukemia/lymphoma). Notably, pt5 (control)
still yielded cancer predictions, reflecting both false positives
and latent susceptibility.

The recurrence of gastric, colon, and breast cancers
reflects both patient gene sets and knowledge-base richness
for these tumors. Limitations include reliance on curated

Chinami M. Cancer Diagnosis from RNA Sequence of Blood Cells by Using Al ] Cancer Oncol 2025,

9(2): 000201.

Open Access Journal of Cancer & Oncology

drivers, exclusion of missense/regulatory variants, and small
sample size. Nevertheless, the framework shows potential
for hypothesis-generating cancer risk assessment.

Beyond the four modalities, further layers such as
epigenomic, transcriptomic, proteomic,immune, and imaging
data could be integrated. Our approaches can be classified
as knowledge-driven (Case 1), variant-centric (Case 2),
pathway-centric (Case 3), and network-centric (Case 4). This
modularity underscores the potential to expand toward truly
multimodal diagnostics, reflecting the multifactorial nature
of cancer.

Conclusion

The retrograde prediction framework demonstrates
that germline high-risk mutations, contextualized by curated
driver, pathway, and network information, can generate
plausible cancer-type predictions. While not diagnostic,
this modular, multimodal approach provides a foundation
for early, hypothesis-generating insights into cancer
susceptibility and precision prevention.
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