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Abstract

The purpose of this paper is to report the results of a study of a method for improving the performance of the quiescence 
phase of Alpha-Beta (α-β) search. The α-β enhancement to the Minimax algorithm optimizes the performance of depth-first 
search when the solutions being searched are arranged in near best-first order reducing the computational effort from O(bd) 
to O(√bd), where b is the branching factor of the game-tree and d is the depth of the search, Knuth and Moore. To postpone 
the asymptotic behaviour of the combinatorial explosion, a full breath search is only carried out to 5 levels of depth in this 
research. A narrow width search expanding only solutions involving the exchange of material, a pawn promotion or king-
in-check situation is then expanded until the position reaches quiescence where no material exchanges or promotions are 
present. When quiescence is reached, the evaluation function is called to score the leaf node of the game-tree. For chess-
playing programs, it has long been held that material exchanges should be explored first before other solutions are expanded 
to ensure optimum performance of α-β pruning, Gillogly. The research reported in this paper has established statistically that 
α-β pruning is improved if a solution not involving an exchange of material or promotion is tried first rather than a material 
exchange solution during the quiescence phase of α-β search.
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Introduction

In 1944, mathematician, physicist, and computer 
scientist, John von Neumann in collaboration with an 
economist, Oskar Morgenstern, authored their seminal work, 
“Theory of Games and Economic Behaviour” [1]. Together 
they conceived a revolutionary mathematical theory of 
economic and social organization based on a theory of 

games of strategy. Not only would this theorem revolutionize 
economics, but it would give rise to an entirely new field of 
scientific inquiry known as Game Theory and the Minimax 
Theorem.

Claude E Shannon [2], an MIT mathematician and Bell Labs 
researcher is regarded as the founder of information theory 
and the father of computer chess, applied this principle in a 
paper he published in 1950 titled “Programming a Computer 
for Playing Chess” [2]. By applying game theory to the chess 
problem he identified the principles that form the essence 
of today’s chess playing programs. Since the publication of 
Shannon’s paper, programming a computer for playing chess 
has moved from a conceptual framework to one of the early 
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cornerstones of artificial intelligence research. Chess was 
then and is now the Drosophila Melanogaster (fruit fly) of 
artificial intelligence research.

Minimax Search, the Essence of Applied 
Game Theory

The Minimax Theorem is the algorithmic realization 
of Game Theory in two-player, zero-sum games of perfect 
information, such as chess. In the minimax theorem, the 
two players are Min and Max. The algorithmic realization 
of Minimax requires a Minimizer and a Maximizer. The 
Minimizer returns the minimum of the values produced by 
the Maximizer and passes that value one level up the game-

tree toward the root of the game-tree, if that value is less than 
the value previously passed up one level of the game-tree. 
The Maximizer, on the other hand, returns the maximum of 
the values produced by the Minimizer and passes that value 
one level up the game-tree if that value is greater than the 
value previously passed up. This process continues until the 
best move, from the machine’s perspective, has been backed 
up the game-tree to the root node of the game-tree. Minimax 
search discovers the Principle Continuation that is the best 
path through the game-tree from the root node to the leaf 
node of the game-tree with the best minimax value [3]. A four 
ply illustration of a minimax game-tree is shown in Figure 1 
with its backed-up values shown in parentheses.

Figure 1: MiniMax game-tree above showing branches without pruning provided by α-β.

Alpha-Beta (α-β) Enhancement to Minimax

The discovery of the α-β extension of minimax search 
is not clear. Arguably, the most thorough and detailed 
description of the α-β extension was described by Donald 
E Knuth [4] and Ronald W Moore [5] of Stanford University 
who described the algorithm in a paper they published in 
1975 Knuth and Moore [4]; Marsland [5]. Although, Knuth 
and Moore were among the first to describe the algorithm, 
other researchers included some of the principles of the α-β 
extension of minimax in their experimental models, including 
Arthur Samuel of IBM in his checkers playing program, 
[6]. Without α-β pruning, the minimax game-tree grows 
exponentially, where b is the branching factor of the game-
tree and d is the depth of search, where the effort coefficient 

is described as O(bd). With α-β enhancement of minimax 
search, when the game-tree is arranged in near best-first 
order, the game-tree growth rate is reduced to O(√bd), Knuth 
and Moore [4]. The odd levels of the α-β game-tree including 
the root node are Alpha nodes. Even levels of the α-β game-
tree consist of Beta nodes. Alpha nodes of the game-tree 
maximize and Beta nodes minimize. During α-β search of the 
game-tree a node that has a returned value that is less than 
Alpha or that is greater than Beta will be pruned from the 
game-tree search as an Alpha or Beta cutoff. Alpha and Beta 
are dynamic values that when taken together form what is 
known as the Alpha-Beta window. The α-β window narrows 
as α-β search progresses and more nodes and branches of 
the game-tree are pruned whose values fall outside of the 
narrowing α-β window [4,7].
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Figure 2: Alpha-Beta game-tree above showing branches pruned as α and β cut offs.

Monty Carlo Tree Search (MCTS) forms the search 
component of Deep Mind’s Alpha Zero reinforcement 
machine learning algorithm that was trained to play chess, 
beat Stock fish 8 in a computer chess match. Independent 
research, however, has shown that in certain applications 
α-β search might out-perform MCTS [8]. The Komodo-mc 
chess program, for example, has effectively replaced α-β 
search with MCTS. Komodo-mc plays at Grandmaster level, 
but not quite as strong as Komodo with α-β search presently. 
Komodo’s FIDE rating is 3200. Komodo is the world’s second 
highest rated linear symbolic chess-playing computer 
program. Stock fish 11 is currently the highest rated chess 
program in terms of player strength.

HAL (Heuristic Associative Linear-algorithm), this 
author’s chess-playing program has never been officially 
rated in terms of its player strength. However, in a chess game 
played between HAL and Komodo on chess.com, Komodo 
required 50 moves to defeat HAL, and HAL was not playing 
at its highest level of play [9].

The forward pruning of α-β search, cuts-off or prunes 
branches of a strongly ordered game-tree whose backed-
up values fall outside the established α-β search window as 
illustrated in Figure 2.

The Negamax Implementation of Alpha-
Beta Search

Negamax is a hybridization of the Alpha-Beta algorithm. 
As mentioned earlier, the Alpha-Beta al- gorithm contains 
both a maximizer and a minimizer, while the Negamax 
algorithm contains only a Maximizer [5]. Negamax returns 

the maximum score for the side whose turn it is to play. The 
maximum returned score for the opponent player is then 
negated making the result behave as the value returned 
by the minimizer in standard Alpha-Beta. Hence the name 
Negamax, the negative of the maximum returned score. 
Negamax pruning is identical to Alpha-Beta pruning, but is 
more easily implemented as a recursive function [10]. The 
Pascal source code logic for the Negamax function of this 
author’s chess program, HAL, follows below.

(* ALPHA−BETA	 *)
(* NegaMax Fail−Soft Alpha−Beta (NFAB) *)

FUNCTION NFAB (P: POINTER; Alpha, Beta, Depth: 
INTEGER): INTEGER;
    VAR

I, Width: INTEGER;
Score, Value: INTEGER; 
NewPly: POINTER;

   BEGIN
IF (Depth <= 0 ) THEN
 BEGIN

(* If depth = 0 then Call the EVAL Function and score the 
terminal node *)

 NFAB: = Eval (P)
          END 
    ELSE
         BEGIN

  IF (P ^ . LX > 1) THEN
                       (* I f Level > 1 and not a t e r m i n a l node *)

        BEGIN
              Width: = Generate (P);

     (* Gen new branch of Game−Tree *)
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IF (Width > 0) THEN
    			       BEGIN

Locate-Refutations (P);
(* Locate Refutations and Killer moves then 

*)
Order (P)

(* Sort this branch (level) of the Game−Tree 
*)
                    END

                           ELSE
                   BEGIN

        NFAB: = Eval (P)
     (* Otherwise call Evaluator *)

 END
         END;
  Score: = −INF;	   (* set maximizer to low−score *)
  I: = 0;		    (* initialize move index *) 
  NewPly: = Create (P);

           (*Create a new level of the Game−Tree 
*)
    REPEAT
     	 I: = I + 1;	 (* Increment move index *)
    	 Make (P);

(* make move at PI then call Alpha−
Beta *)
Value: = −NFAB (NewPly, −Beta, −Max 

(Alpha, Score),
Decrement (P, Depth) );

Undo (P);
             (* After Alpha−Beta s cored move, 
unmake move *) 
        (* If Move i s an Improvement, Save Better 
Score *) 
      IF (Value > Score) THEN
           BEGIN

    Score: = Value; 	 (* save 
better score *)

 			       Save _ Refutation (P)
 			         (* save better move in 
refutationtable *)

            END;
     (* Build Refutation Table from Triangular Work 
Array *)

IF (P ^. LX = 1) THEN
 			   (* IF first level of Game−Tree *)

                    BEGIN
             Build _ Refutation _ Table (P)

                   END;
(* Test for end of	  Iteration 

Sequence at Level P ^. LX *)
    	 UNTIL ( (Score >= Beta) OR (I = Width) );

          (* Put KILLERS into	 Killer List *)
IF ( (Score >= Beta ) AND (P ^. LX > 1) ) 

THEN
   BEGIN

Save _ Killer (P);
END;

(* Back Score up to previous level of the Game−Tree	
*)

Drop (NewPly);
(* drop newply of the Game−Tree *)

 		  NFAB: = Score (* Return best score *)
 	 END
  END;			             (* End of NFAB Alpha−Beta 
Function *)
Code 1: Pascal code for a Negamax version of the depth-
limited Alpha-Beta function
 

Quiescence Extension of Alpha-Beta

Quiescence search is a narrow extended search after 
the full-width fixed-depth α-β search reaches its fixed-depth 
limit. This is known as the search horizon (Figure 3).

Figure 3: Quiescence Extension to Alpha-Beta Search
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By extending α-β search with a narrow but deep 
quiescence search, the horizon effect can be addressed and 
eliminated. The horizon effect refers to a condition occurring 
when a fixed-depth, exhaustive α-β search ends on a terminal-
node that contains an action that might be incomplete without 
knowing the consequence of that action if the next level of 
the game-tree were known, Berliner [11]. For example, if the 
fixed-depth search ends at a terminal-node on the search 
horizon that is a capture of an opponent’s piece, the returned 
score of the exchange of material might appear to be a good 
action for the program, but had the search been extended 
another ply of depth we might discover that the opponent 
would capture the capturing piece. The net value of the 
exchange might be less than favourable for the machine. By 
extending the search with a narrow search until the position 
becomes quiet where no exchanges occur, the program can 
avoid the consequences of the horizon effect. This narrow 
extended search is known as quiescence search, Marsland 
and Schaeffer [12]. In addition to single-ply extensions 
for capture moves, many implementations of quiescence 
search also extend for king-in-check situations for one or 
two additional ply of depth. Some implementations of the 
quiescence phase of α-β search also extend additional plies 
of depth when a pawn promotion is present at a terminal-
node [13]. This author’s chess program, HAL, will also extend 
an additional ply of depth for a capture, pawn promotion or a 
king-in-check situation.

In this author’s chess-playing program, HAL, the 
quiescence phase of α-β search is managed by a Decrement 
function that is called as a parameter within the recursive 
call to the α-β search function, NFAB. In a recursive call to α-β 
search (NFAB) we must include a reference to a variable that 
contains a value initially indicating to what depth (number 
of plies) we wish the full-width fixed-depth α-β search to be 
performed. If, for example, we wish the program to generate 
a fixed-depth game-tree of five levels of depth, we would 
initialize the value of that variable to 5 and decrement it by 
1 each time another recursive call to the α-β search function 
is performed. When the Depth variable is decremented to 0, 
five levels (or ply) of the game-tree have been generated. At 
that point the program has reached the terminal-node (leaf 
node) of that path through the game-tree. An Evaluation 
function is then called to score the value ascribed to that path 
through the game-tree.

In this author’s chess-playing program, HAL, the depth-
limit for recursive calls to the α-β search function is located 
in an integer variable named Depth. This variable is passed 
to the Decrement function as an imbedded parameter within 
the recursive call to the α-β search function NFAB thusly:

Value: = −NFAB (NewPly, −Beta, −Max (Alpha, Score), 
Decrement (P, Depth));

It should be noted that the initial call to the Alpha-Beta 
algorithm NFAB is as follows:

Value: = NFAB (P, Alpha, Beta and Depth));

The Decrement function will then decide whether to 
decrement the Depth variable or not. If the Decrement 
function does not decrement the Depth variable, then it has 
found that the move at the terminal-node is a capture, a pawn 
promotion, or a King-in-check situation, and an additional 
level of the game-tree will be generated until Quiescence 
has been reached. When Quiescence is reached during the 
Quiescence phase of α-β search the terminal position is said 
to be a Dead position to which the Evaluation function (Eval) 
is invoked to compute the value of that path through the 
game-tree that ends on the terminal-node in question [14]. 
The value returned by the Evaluation function will be backed-
up the game-tree toward the root-node of the game-tree by 
the rules of Minimax. The value returned by the Evaluation 
function is known as the Provisional Backed-up Value (PVB) 
[3]. The Pascal source code for the Decrement function of the 
HAL chess program follows below.

(* QUIESCENCE *)
(* Decrementor for Depth Value in Quiescent NFAB Search 
Function *)
FUNCTION Decrement (P: POINTER; N: INTEGER): 
INTEGER;
          VAR

    D, I, L, S, X: INTEGER;
         BEGIN

    S: = P ^. SX;
 	     (* S = Side whose turn it is to move, White = 1, Black 
= 2 *)

    I: = P ^. IX;
 	     (* I = Index of move i n Move−List that might be a 
capture or Promotion *)

    L: = P ^. LX;
    (* L = Level of depth of the Game−Tree being 

expanded *)
  	     D: = N − 1;

    (* D = Recursive alpha −beta value of full –width 
level syet to be expanded *)

    X: = S + ( ( S − 1 ) * −2 ) + 1;
   (* X = Opponent; If S = 1 t hen X = 2, I f S = 2 t hen X 

= 1 *)
   (* Test for Singular Extension for Quiescence Move 

Generation *)
       IF (N = 1) THEN
                         (* A Leaf −Node of the Game−Tree has been 
reached *)
     BEGIN
               IF ( (L = Horizon) OR (L = Quiescence) OR
                         (P ^. Move_List [P ^. MLI [I] ] . Mode_Cell = ’M’) )
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              THEN
(* Mated or Search Horizon Reached *)

BEGIN
     D: = 0
END 

       ELSE
BEGIN
       IF (P ^ . Move_List [P ^ . MLI [I] ] . Mode_Cell IN 

[ ’C ’,’ P’] )
       THEN

(* Capture or Pawn Promotion *)
       BEGIN

D: = N
(* IF a Capture or Pawn Promotion, Don’t 

decrement Depth *)
          END

(* Allow one more level to be generated *)
ELSE
       BEGIN
               D: = N-1

(* Else, IF not a Capture or 
Promotion, decrement Depth *)

     END 
 		            END

END
      ELSE
   BEGIN

D: = N − 1	 (* Else, IF None of above, 
decrement Depth *)
END;

      Decrement: = D    (* Return Depth value to Alpha−Beta 
Recursive Call *)
END;
Code 2: Pascal code for the Quiescence search function.

Optimization Method for Quiescence in 
Alpha-Beta Search

Quiescence search might extend the search many 
additional levels before reaching quiescence. If the program 
can cause a cut off to occur before extending search to 
quiescence, a large amount of time and computational 
effort can be saved to achieve the same result. The way to 
achieve this is to try a move that is not a capture, a pawn 
promotion or a king-in-check situation before expanding a 
capture or promotion move or a king-in-check situation. 
During the quiescence phase of α-β search the move- list is 
sorted bringing captures and pawn promotions to the top of 
the move-list. If after sorting there is a capture or promotion 
move at the top of the move-list, the algorithm will index 
up through the move-list until a move is found that is not a 
capture or pawn promotion. The move index for that move is 
then moved to a hold variable and all moves above the non-
capture, non-promotion move are move down in the move-

list leaving a place at the top of the move-list for the move 
saved in the hold variable. The move in the hold variable is 
then moved to the top of the move-list to be expanded first. 
If the move inserted at the top of the move-list does not 
because a cut off to occur, the next move in the move-list is 
expanded that will cause quiescence search to occur.

(* Quiescence Search Optimization Algorithm Called from 
NFAB α-β *)

PROCEDURE Order (P: POINTER);
VAR	 H, I: INTEGER;
      (* Sort Move−List at P for width WX *)

BEGIN
Sort (P, P ^ .WX);
(* Leaf Node when Depth =1, LX i s Level Index *)

 	 (* Test for Capture or Promotion *)
(* at the top of Move−List *)
IF ( (P ^ . LX > 1) AND (Depth = 1) AND
        (P ^ . Move_List [P ^ . MLI [1] ] . Mode_Cell IN 

[’C ’, ’P’] ) )
THEN
(* IF True Then Initialize Index I *)
BEGIN
      I: = 1;
      WHILE ( ( P ^ . Move_List [ P ^ . MLI [ I ] ] . 
Mode_Cell

IN [’C’, ’P’] ) AND (I < P ^ .WX) ) DO
(* Loop down Move−List incrementing I *)
(* until a move is found that is not a Capture *) 
(* or a Pawn promotion *)

BEGIN
          I: = I + 1
END;
IF (NOT (P ^. Move_List [P ^. MLI [I] ] . 

Mode_Cell
         IN [ ’C ’,’P’] ) AND ( I <= P ^ .WX ) )

       THEN
(* IF the move a t index location in Move−List *) 
(* is not a Capture nor Promotion then *)
(* move the index of that moves location *) 
(* to the Move−List index hold variable H *)

 		  BEGIN
     H: = P ^. MLI [I];
     FOR I: = (I − 1) DOWNTO 1 DO

(* and then Move all moves in the Move−List *)
(* down by one until the Move−List index = 1 *)

BEGIN
         P^. MLI [I + 1]: = P ^. MLI [I]
END;

(* then	 insert H in the top of the Move−List *)
P^. MLI [I]: = H

 	 END
        END
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 END;
 Code 3: Pascal Code for Optimization of Quiescence Phase 
of α-β Search.

The Experiment

When the chess program, HAL, enters the quiescence 
phase of α-β search of the game-tree, the search is extended 
one additional ply (level) of depth if the last move considered 
was a capture move or a pawn promotion or king-in-check 
situation. This process continues until there are no captures 
or promotions produced and the search is said to have 
reached quiescence. At which point the static evaluator is 
called and the terminal position is scored and the returned 
value is backed up the game- tree toward the root node of 
the tree.

This research expands on the author’s earlier published 
research involving the behaviour of α-β search on game-
trees [15], and an optimization technique first introduced in 
theory by Dr. Monroe N [16] in his chess playing algorithm: 
Ostridge Newborn. Dr. Newborn [16] incorporated a one- 
move-generator to generate and try only the first move 
of a move-list before generating a complete list of all legal 
moves for the present board position. If the first move causes 
an Alpha or Beta cut off, generating a complete move-list is 
unnecessary. If a cut off does not occur on the first move, the 
full- move-list-generator is called and a list of all legal moves 
is generated for the current board position.
 

The Experimental Model

The experimental model that rendered the metrics 
reported in this research paper was created by its principal 
author Wheeler S [9]. The source code is written in Turbo 
Pascal 6.0, consisting of 8,000+ lines of source code. The 
program has been setup to report the metrics that support 
this research. The Turbo Pascal 6.0 compiler produces only 
a 32-Bit DOS executable (.exe). To execute HAL on a 64-bit 
Windows Operating System, an emulator, such as DOSBOX 
must be used. HAL can be executed on a Linux or UNIX 
operating system with DOSEMU.

The chess program, HAL, utilizes the Iterative-
Deepening, Fail-Soft Negamax α-β search algorithm (NFAB) 
with Quiescence search singular extensions, the Killer 
Heuristic that maintains four Killer moves in its Killer-Table 
and a larger Refutation-Table of previously discovered moves 
that caused pruning to occur [17]. These methods collectively 
help ensures that moves with the highest probability of 
achieving maximum α-β pruning will be arranged at the 
top of the move-list after reordering of the move-list occurs. 
These processes are applied to each level of the game-tree 

as each new ply of legal chess moves is generated [5,9]. The 
chess program, HAL, has full communications capability 
through natural language processing (NLP) such that it can 
be configured through a series of English directives given 
to the chess automaton, HAL, at start-up. The hardware on 
which HAL was executed consisted of a Hewlett Packard, 
Elitebook 8530w laptop computer with 8 Gigabytes of DRAM 
memory and an Intel T9900 3.06 Gigahertz Core2 Duo CPU 
installed. The operating system (OS) was 32- Bit Windows 
Professional.

The Test Runs

To gather the metrics supporting the research reported 
in this paper, the chess program, HAL, was run twice. Both 
runs of the program were given the identical 24 chess moves. 
HAL (the chess program) played the black pieces in both 
instances. One execution of the chess program was setup 
to include the author’s quiescence search optimization 
enhancement. The other execution of the chess program 
was setup to exclude the quiescence search optimization 
enhancement.

The setup for both runs of the program, HAL, only required 
setting a Boolean variable to true (quiescence optimization) 
or False (without quiescence optimization) through natural 
English typed commands. The two executions of the chess 
program were configured by commands given to HAL’s initial 
NLP (Natural Language Processing) interface dialogue. To set 
the chess program up to run with quiescence optimization 
the following request was entered: “HAL, attempt quiescence 
optimization.” To set the chess program up to run without 
quiescence optimization the following request was entered: 
“HAL, do not attempt quiescence optimization.” HAL must also 
be requested to report the metrics for both program setups 
by entering the following request when the chess program 
prompts for user input, “HAL, report game statistics.” HAL 
was also requested to play with skill level 5, which generates 
a 5-ply full-width game-tree before extending with a narrow-
width quiescence search.

The Metrics Produced by the Experimental 
Model, HAL

The metrics produced by the two separate runs of the 
chess program, HAL, are included in the Table 1 above. One 
run was without quiescence optimization and the other was 
run with quiescence optimization. The following table shows 
the computation time and number of nodes processed for 
each of the twenty-four chess moves for both runs of the 
chess program, HAL.
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Human 
White 
Moves

HAL 
Black 
Moves

Time with 
Opti- mization 

Min:Sec.Hnd

Time Without 
Opti- mization 

Min:Sec.Hnd

Nodes 
Expanded 
with Opti- 
mization

Nodes 
Expanded 
Without 

Optimization

Branches 
Pruned: Alpha-

Beta Cutoffs 
without 

Optimization

Branches 
Pruned: 

Alpha-Beta 
Cutoffs with 

Optimization
e2-e4 e7-e5 0.000694 0.00.50 792 860 108 107
g1-f3 g8-f6 0.000891 0.01.43 1,18,987 1,19,031 15,200 14,066
f1-b5 f8-d6 0.000706 0.01.25 98,123 1,03,685 13,665 13,809
d2-d3 a7-a6 0.00.43 0.001146 56,116 85,608 11,257 9,740
b5-c4 b7-b5 0.00.31 0.000752 39,374 59,978 7,565 6,085
c4-b3 0-0 0.00.32 0.02.14 46,380 1,49,232 25,161 6,993

0-0 b8-c6 0.000949 0.07.58 1,42,661 7,73,163 67,940 17,437
a2-a3 c6-d4 0.04.51 0.14.50 7,78,288 11,50,234 1,35,374 78,988
b3-a2 c8-b7 0.04.17 0.16.15 78,55,657 16,06,844 1,46,695 75,755
h2-h3 d4xf3 0.012616 0.43.18 3,39,779 4,85,855 3,53,683 2,45,852
d1-f3 d6-c5 0.12.41 0.016181 11,29,705 22,18,876 2,01,930 1,19,815
b1-c3 d7-d6 0.011921 0.028229 15,41,251 38,13,630 3,69,283 1,58,496
g3-h2 d8-h4 0.007755 0.49.31 9,50,458 47,18,602 4,31,837 96,570
b2-b4 c5-d4 0.51.51 0.014757 44,47,001 17,82,210 1,78,761 4,38,498
c1-b2 h5-f4 0.51.25 1.08.00 49,84,948 62,73,266 6,10,099 4,83,596
a1-e1 a6-a5 0.078727 0.167083 1,08,07,657 2,22,14,772 22,17,027 10,69,545
b4xa5 a8xa5 0.03485 0.088646 46,67,748 1,16,46,847 11,66,199 4,56,105
h2-h1 d4xc3 0.030012 0.055104 39,64,597 71,51,202 7,46,377 4,23,911
b2xc3 a5-a3 0.05.48 0.005162 4,77,992 5,93,873 74,412 61,489
a2-b3 f4xd3 0.07.25 0.10.44 6,65,984 9,97,150 1,15,033 82,843
e1-e3 d3-f4 0.006586 0.010625 8,56,418 14,38,775 1,45,665 89,376
c3-b2 a3-a5 0.09.56 0.21.25 8,91,364 19,88,336 2,02,731 93,377
b2-c3 a5-a6 0.013275 0.26.35 18,39,570 24,35,221 2,45,140 1,76,240

Table 1: Table produced from the two runs of the chess program, HAL, both with and without optimization.	

A line graph illustrating a comparison of the performance 
metrics and variance produced by quiescence optimization 
as compared to the performance metrics without quiescence 
optimization are offered in Figures 4 & 5 below.

In both line graphs below, a solid line is with optimization 
and a dashed line is without optimization.

Figure 4: Line Graph of the Elapsed Move Times with Optimization and without Optimization.

https://medwinpublishers.com/OAJDA/


Open Access Journal of Data Science & Artificial Intelligence9

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial 
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Figure 5: Line Graph for the Computational Effort of moves with Optimization and without Optimization.

The Hypothesis

The Null Hypothesis

H0: Trying a move that will not cause a singular extension 
of the game-tree before a move that will cause a singular 
extension will not demonstrate a statistically significant 
improvement in performance of the quiescence phase of α-β 
search.

The Alternative Hypothesis

Ha: Trying a move that will not cause a singular extension 
of the game-tree before a move that will cause a singular 
extension will demonstrate a statistically significant 
improvement in performance of the quiescence phase of α-β 
search.

The Hypothesis Test

The hypothesis test was performed with a standard 
T-Test as applied to the output metrics produced by the 
chess program for both the quiescence alpha-beta search 
with optimization and quiescence alpha-beta search without 
optimization.

T-Test Results

With a confidence interval of 95% and an α (alpha) 
of 0.05, for both a two-tailed and a one-tailed t-test of the 
standard distribution of the data points, the P value of the 
t-test was less than α rejecting the aforementioned Null 
hypothesis in favour of the alternative hypothesis. Thus, this 
establishes the statistical significance of quiescence alpha-
beta search with optimization over quiescence alpha-beta 

search without optimization. The t-test results follow below.

import numpy as np
import pandas as pd
from bio in fokit . analys import stat

df = pd . read _ csv (“chess _ data 1.csv “)
dframe = df [ [’Moves Without Optimization’ , ’Moves with 
Optimization’] ]

res = stat ( )
res. ttest (df = dframe,
res = [’Moves Without Optimization’, ’Moves with 
Optimization’] , test_ type = 3)
print (res . summary)
Code 4: Python program for T-Test Results.

The P value is less than 0.05 in both one-tail and two-
tail t-test, which means we can reject the null hypothesis in 
favour of the alternative hypothesis (Table 2).
 

Paired T-Test
Sample Size 24

Difference Mean 1.52E+06
t 2.63178

Df 23
P-value (one-tail) 0.007454
P-value (two-tail) 0.014908

Lower 95.0 326237
Upper 95.0 2.72E+06

Table 2: Hypothesis Test Results.

https://medwinpublishers.com/OAJDA/


Open Access Journal of Data Science & Artificial Intelligence10

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial 
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Conclusion

The findings of this research have been demonstrated 
by experimentation and empiricism. The modification to 
the quiescence extension of iterative-deepening alpha-beta 
aspiration search demonstrates a statistically significant 
performance improvement of deep game-tree search as 
established by this research for game-trees of the type and 
dimension as described in this research paper.

For researchers who wish to verify the results of the 
research reported in this paper, and for peer review of these 
findings, the author offers the Windows executable code 
(.exe) and the Pascal source code (.pas), with instructions for 
setting up the experiment to anyone requesting a copy. To 
request a copy of the experimental model, HAL, used in this 
research, send a request by email to swheeler@ai-scientist.
com. The experimental model, HAL, will be returned to the 
requester, free of charge by Zipped file attachment in a reply 
email.
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