
Open Access Journal of Data Science & Artificial Intelligence
ISSN: 2996-671XMEDWIN PUBLISHERS

Committed to Create Value for Researchers

An Optimization Method for Quiescence in Chess-Playing Automata J Data Sci Artificial Int

Abstract

The purpose of this paper is to report the results of a study of a method for improving the performance of the quiescence
phase of Alpha-Beta (α-β) search. The α-β enhancement to the Minimax algorithm optimizes the performance of depth-first
search when the solutions being searched are arranged in near best-first order reducing the computational effort from O(bd)
to O(√bd), where b is the branching factor of the game-tree and d is the depth of the search, Knuth and Moore. To postpone
the asymptotic behaviour of the combinatorial explosion, a full breath search is only carried out to 5 levels of depth in this
research. A narrow width search expanding only solutions involving the exchange of material, a pawn promotion or king-
in-check situation is then expanded until the position reaches quiescence where no material exchanges or promotions are
present. When quiescence is reached, the evaluation function is called to score the leaf node of the game-tree. For chess-
playing programs, it has long been held that material exchanges should be explored first before other solutions are expanded
to ensure optimum performance of α-β pruning, Gillogly. The research reported in this paper has established statistically that
α-β pruning is improved if a solution not involving an exchange of material or promotion is tried first rather than a material
exchange solution during the quiescence phase of α-β search.

Keywords: Alpha-Beta; Minimax; Negamax; Optimization; Quiescence

An Optimization Method for Quiescence in Chess-Playing
Automata

Wheeler SF*
Department of Information Science, University of North Texas, USA

*Corresponding author: Stephen F Wheeler, Department of Information Science, University
of North Texas, USA, Tel: 1 (214) 642-7868; Email: Stephen.Wheeler@unt.edu

Research Article
Volume 2 Issue 1

Received Date: August 01, 2024

Published Date: August 13, 2024

DOI: 10.23880/oajda-16000138

Abbreviations

MCTS: Monty Carlo Tree Search; HAL: Heuristic Associative
Linear-Algorithm; PVB: Provisional Backed-up Value; NLP:
Natural Language Processing; OS: Operating System.

Introduction

In 1944, mathematician, physicist, and computer
scientist, John von Neumann in collaboration with an
economist, Oskar Morgenstern, authored their seminal work,
“Theory of Games and Economic Behaviour” [1]. Together
they conceived a revolutionary mathematical theory of
economic and social organization based on a theory of

games of strategy. Not only would this theorem revolutionize
economics, but it would give rise to an entirely new field of
scientific inquiry known as Game Theory and the Minimax
Theorem.

Claude E Shannon [2], an MIT mathematician and Bell Labs
researcher is regarded as the founder of information theory
and the father of computer chess, applied this principle in a
paper he published in 1950 titled “Programming a Computer
for Playing Chess” [2]. By applying game theory to the chess
problem he identified the principles that form the essence
of today’s chess playing programs. Since the publication of
Shannon’s paper, programming a computer for playing chess
has moved from a conceptual framework to one of the early

https://medwinpublishers.com/OAJDA/
https://portal.issn.org/resource/ISSN-L/2996-671X
https://medwinpublishers.com/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23880/oajda-16000138

Open Access Journal of Data Science & Artificial Intelligence2

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

cornerstones of artificial intelligence research. Chess was
then and is now the Drosophila Melanogaster (fruit fly) of
artificial intelligence research.

Minimax Search, the Essence of Applied
Game Theory

The Minimax Theorem is the algorithmic realization
of Game Theory in two-player, zero-sum games of perfect
information, such as chess. In the minimax theorem, the
two players are Min and Max. The algorithmic realization
of Minimax requires a Minimizer and a Maximizer. The
Minimizer returns the minimum of the values produced by
the Maximizer and passes that value one level up the game-

tree toward the root of the game-tree, if that value is less than
the value previously passed up one level of the game-tree.
The Maximizer, on the other hand, returns the maximum of
the values produced by the Minimizer and passes that value
one level up the game-tree if that value is greater than the
value previously passed up. This process continues until the
best move, from the machine’s perspective, has been backed
up the game-tree to the root node of the game-tree. Minimax
search discovers the Principle Continuation that is the best
path through the game-tree from the root node to the leaf
node of the game-tree with the best minimax value [3]. A four
ply illustration of a minimax game-tree is shown in Figure 1
with its backed-up values shown in parentheses.

Figure 1: MiniMax game-tree above showing branches without pruning provided by α-β.

Alpha-Beta (α-β) Enhancement to Minimax

The discovery of the α-β extension of minimax search
is not clear. Arguably, the most thorough and detailed
description of the α-β extension was described by Donald
E Knuth [4] and Ronald W Moore [5] of Stanford University
who described the algorithm in a paper they published in
1975 Knuth and Moore [4]; Marsland [5]. Although, Knuth
and Moore were among the first to describe the algorithm,
other researchers included some of the principles of the α-β
extension of minimax in their experimental models, including
Arthur Samuel of IBM in his checkers playing program,
[6]. Without α-β pruning, the minimax game-tree grows
exponentially, where b is the branching factor of the game-
tree and d is the depth of search, where the effort coefficient

is described as O(bd). With α-β enhancement of minimax
search, when the game-tree is arranged in near best-first
order, the game-tree growth rate is reduced to O(√bd), Knuth
and Moore [4]. The odd levels of the α-β game-tree including
the root node are Alpha nodes. Even levels of the α-β game-
tree consist of Beta nodes. Alpha nodes of the game-tree
maximize and Beta nodes minimize. During α-β search of the
game-tree a node that has a returned value that is less than
Alpha or that is greater than Beta will be pruned from the
game-tree search as an Alpha or Beta cutoff. Alpha and Beta
are dynamic values that when taken together form what is
known as the Alpha-Beta window. The α-β window narrows
as α-β search progresses and more nodes and branches of
the game-tree are pruned whose values fall outside of the
narrowing α-β window [4,7].

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence3

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Figure 2: Alpha-Beta game-tree above showing branches pruned as α and β cut offs.

Monty Carlo Tree Search (MCTS) forms the search
component of Deep Mind’s Alpha Zero reinforcement
machine learning algorithm that was trained to play chess,
beat Stock fish 8 in a computer chess match. Independent
research, however, has shown that in certain applications
α-β search might out-perform MCTS [8]. The Komodo-mc
chess program, for example, has effectively replaced α-β
search with MCTS. Komodo-mc plays at Grandmaster level,
but not quite as strong as Komodo with α-β search presently.
Komodo’s FIDE rating is 3200. Komodo is the world’s second
highest rated linear symbolic chess-playing computer
program. Stock fish 11 is currently the highest rated chess
program in terms of player strength.

HAL (Heuristic Associative Linear-algorithm), this
author’s chess-playing program has never been officially
rated in terms of its player strength. However, in a chess game
played between HAL and Komodo on chess.com, Komodo
required 50 moves to defeat HAL, and HAL was not playing
at its highest level of play [9].

The forward pruning of α-β search, cuts-off or prunes
branches of a strongly ordered game-tree whose backed-
up values fall outside the established α-β search window as
illustrated in Figure 2.

The Negamax Implementation of Alpha-
Beta Search

Negamax is a hybridization of the Alpha-Beta algorithm.
As mentioned earlier, the Alpha-Beta al- gorithm contains
both a maximizer and a minimizer, while the Negamax
algorithm contains only a Maximizer [5]. Negamax returns

the maximum score for the side whose turn it is to play. The
maximum returned score for the opponent player is then
negated making the result behave as the value returned
by the minimizer in standard Alpha-Beta. Hence the name
Negamax, the negative of the maximum returned score.
Negamax pruning is identical to Alpha-Beta pruning, but is
more easily implemented as a recursive function [10]. The
Pascal source code logic for the Negamax function of this
author’s chess program, HAL, follows below.

(* ALPHA−BETA	 *)
(* NegaMax Fail−Soft Alpha−Beta (NFAB) *)

FUNCTION NFAB (P: POINTER; Alpha, Beta, Depth:
INTEGER): INTEGER;
 VAR

I, Width: INTEGER;
Score, Value: INTEGER;
NewPly: POINTER;

 BEGIN
IF (Depth <= 0) THEN
 BEGIN

(* If depth = 0 then Call the EVAL Function and score the
terminal node *)

 NFAB: = Eval (P)
 END
 ELSE
 BEGIN

 IF (P ^ . LX > 1) THEN
 (* I f Level > 1 and not a t e r m i n a l node *)

 BEGIN
 Width: = Generate (P);

 (* Gen new branch of Game−Tree *)

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence4

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

IF (Width > 0) THEN
 			 BEGIN

Locate-Refutations (P);
(* Locate Refutations and Killer moves then

*)
Order (P)

(* Sort this branch (level) of the Game−Tree
*)
 END

 ELSE
 BEGIN

 NFAB: = Eval (P)
 (* Otherwise call Evaluator *)

 END
 END;
 Score: = −INF;	 (* set maximizer to low−score *)
 I: = 0;		 (* initialize move index *)
 NewPly: = Create (P);

 (*Create a new level of the Game−Tree
*)
 REPEAT
 	 I: = I + 1;	 (* Increment move index *)
 	 Make (P);

(* make move at PI then call Alpha−
Beta *)
Value: = −NFAB (NewPly, −Beta, −Max

(Alpha, Score),
Decrement (P, Depth));

Undo (P);
 (* After Alpha−Beta s cored move,
unmake move *)
 (* If Move i s an Improvement, Save Better
Score *)
 IF (Value > Score) THEN
 BEGIN

 Score: = Value; 	 (* save
better score *)

 			 Save _ Refutation (P)
 			 (* save better move in
refutationtable *)

 END;
 (* Build Refutation Table from Triangular Work
Array *)

IF (P ^. LX = 1) THEN
 			 (* IF first level of Game−Tree *)

 BEGIN
 Build _ Refutation _ Table (P)

 END;
(* Test for end of	 Iteration

Sequence at Level P ^. LX *)
 	 UNTIL ((Score >= Beta) OR (I = Width));

 (* Put KILLERS into	 Killer List *)
IF ((Score >= Beta) AND (P ^. LX > 1))

THEN
 BEGIN

Save _ Killer (P);
END;

(* Back Score up to previous level of the Game−Tree	
*)

Drop (NewPly);
(* drop newply of the Game−Tree *)

 		 NFAB: = Score (* Return best score *)
 	 END
 END;			 (* End of NFAB Alpha−Beta
Function *)
Code 1: Pascal code for a Negamax version of the depth-
limited Alpha-Beta function

Quiescence Extension of Alpha-Beta

Quiescence search is a narrow extended search after
the full-width fixed-depth α-β search reaches its fixed-depth
limit. This is known as the search horizon (Figure 3).

Figure 3: Quiescence Extension to Alpha-Beta Search

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence5

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

By extending α-β search with a narrow but deep
quiescence search, the horizon effect can be addressed and
eliminated. The horizon effect refers to a condition occurring
when a fixed-depth, exhaustive α-β search ends on a terminal-
node that contains an action that might be incomplete without
knowing the consequence of that action if the next level of
the game-tree were known, Berliner [11]. For example, if the
fixed-depth search ends at a terminal-node on the search
horizon that is a capture of an opponent’s piece, the returned
score of the exchange of material might appear to be a good
action for the program, but had the search been extended
another ply of depth we might discover that the opponent
would capture the capturing piece. The net value of the
exchange might be less than favourable for the machine. By
extending the search with a narrow search until the position
becomes quiet where no exchanges occur, the program can
avoid the consequences of the horizon effect. This narrow
extended search is known as quiescence search, Marsland
and Schaeffer [12]. In addition to single-ply extensions
for capture moves, many implementations of quiescence
search also extend for king-in-check situations for one or
two additional ply of depth. Some implementations of the
quiescence phase of α-β search also extend additional plies
of depth when a pawn promotion is present at a terminal-
node [13]. This author’s chess program, HAL, will also extend
an additional ply of depth for a capture, pawn promotion or a
king-in-check situation.

In this author’s chess-playing program, HAL, the
quiescence phase of α-β search is managed by a Decrement
function that is called as a parameter within the recursive
call to the α-β search function, NFAB. In a recursive call to α-β
search (NFAB) we must include a reference to a variable that
contains a value initially indicating to what depth (number
of plies) we wish the full-width fixed-depth α-β search to be
performed. If, for example, we wish the program to generate
a fixed-depth game-tree of five levels of depth, we would
initialize the value of that variable to 5 and decrement it by
1 each time another recursive call to the α-β search function
is performed. When the Depth variable is decremented to 0,
five levels (or ply) of the game-tree have been generated. At
that point the program has reached the terminal-node (leaf
node) of that path through the game-tree. An Evaluation
function is then called to score the value ascribed to that path
through the game-tree.

In this author’s chess-playing program, HAL, the depth-
limit for recursive calls to the α-β search function is located
in an integer variable named Depth. This variable is passed
to the Decrement function as an imbedded parameter within
the recursive call to the α-β search function NFAB thusly:

Value: = −NFAB (NewPly, −Beta, −Max (Alpha, Score),
Decrement (P, Depth));

It should be noted that the initial call to the Alpha-Beta
algorithm NFAB is as follows:

Value: = NFAB (P, Alpha, Beta and Depth));

The Decrement function will then decide whether to
decrement the Depth variable or not. If the Decrement
function does not decrement the Depth variable, then it has
found that the move at the terminal-node is a capture, a pawn
promotion, or a King-in-check situation, and an additional
level of the game-tree will be generated until Quiescence
has been reached. When Quiescence is reached during the
Quiescence phase of α-β search the terminal position is said
to be a Dead position to which the Evaluation function (Eval)
is invoked to compute the value of that path through the
game-tree that ends on the terminal-node in question [14].
The value returned by the Evaluation function will be backed-
up the game-tree toward the root-node of the game-tree by
the rules of Minimax. The value returned by the Evaluation
function is known as the Provisional Backed-up Value (PVB)
[3]. The Pascal source code for the Decrement function of the
HAL chess program follows below.

(* QUIESCENCE *)
(* Decrementor for Depth Value in Quiescent NFAB Search
Function *)
FUNCTION Decrement (P: POINTER; N: INTEGER):
INTEGER;
 VAR

 D, I, L, S, X: INTEGER;
 BEGIN

 S: = P ^. SX;
 	 (* S = Side whose turn it is to move, White = 1, Black
= 2 *)

 I: = P ^. IX;
 	 (* I = Index of move i n Move−List that might be a
capture or Promotion *)

 L: = P ^. LX;
 (* L = Level of depth of the Game−Tree being

expanded *)
 	 D: = N − 1;

 (* D = Recursive alpha −beta value of full –width
level syet to be expanded *)

 X: = S + ((S − 1) * −2) + 1;
 (* X = Opponent; If S = 1 t hen X = 2, I f S = 2 t hen X

= 1 *)
 (* Test for Singular Extension for Quiescence Move

Generation *)
 IF (N = 1) THEN
 (* A Leaf −Node of the Game−Tree has been
reached *)
 BEGIN
 IF ((L = Horizon) OR (L = Quiescence) OR
 (P ^. Move_List [P ^. MLI [I]] . Mode_Cell = ’M’))

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence6

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

 THEN
(* Mated or Search Horizon Reached *)

BEGIN
 D: = 0
END

 ELSE
BEGIN
 IF (P ^ . Move_List [P ^ . MLI [I]] . Mode_Cell IN

[’C ’,’ P’])
 THEN

(* Capture or Pawn Promotion *)
 BEGIN

D: = N
(* IF a Capture or Pawn Promotion, Don’t

decrement Depth *)
 END

(* Allow one more level to be generated *)
ELSE
 BEGIN
 D: = N-1

(* Else, IF not a Capture or
Promotion, decrement Depth *)

 END
 		 END

END
 ELSE
 BEGIN

D: = N − 1	 (* Else, IF None of above,
decrement Depth *)
END;

 Decrement: = D (* Return Depth value to Alpha−Beta
Recursive Call *)
END;
Code 2: Pascal code for the Quiescence search function.

Optimization Method for Quiescence in
Alpha-Beta Search

Quiescence search might extend the search many
additional levels before reaching quiescence. If the program
can cause a cut off to occur before extending search to
quiescence, a large amount of time and computational
effort can be saved to achieve the same result. The way to
achieve this is to try a move that is not a capture, a pawn
promotion or a king-in-check situation before expanding a
capture or promotion move or a king-in-check situation.
During the quiescence phase of α-β search the move- list is
sorted bringing captures and pawn promotions to the top of
the move-list. If after sorting there is a capture or promotion
move at the top of the move-list, the algorithm will index
up through the move-list until a move is found that is not a
capture or pawn promotion. The move index for that move is
then moved to a hold variable and all moves above the non-
capture, non-promotion move are move down in the move-

list leaving a place at the top of the move-list for the move
saved in the hold variable. The move in the hold variable is
then moved to the top of the move-list to be expanded first.
If the move inserted at the top of the move-list does not
because a cut off to occur, the next move in the move-list is
expanded that will cause quiescence search to occur.

(* Quiescence Search Optimization Algorithm Called from
NFAB α-β *)

PROCEDURE Order (P: POINTER);
VAR	 H, I: INTEGER;
 (* Sort Move−List at P for width WX *)

BEGIN
Sort (P, P ^ .WX);
(* Leaf Node when Depth =1, LX i s Level Index *)

 	 (* Test for Capture or Promotion *)
(* at the top of Move−List *)
IF ((P ^ . LX > 1) AND (Depth = 1) AND
 (P ^ . Move_List [P ^ . MLI [1]] . Mode_Cell IN

[’C ’, ’P’]))
THEN
(* IF True Then Initialize Index I *)
BEGIN
 I: = 1;
 WHILE ((P ^ . Move_List [P ^ . MLI [I]] .
Mode_Cell

IN [’C’, ’P’]) AND (I < P ^ .WX)) DO
(* Loop down Move−List incrementing I *)
(* until a move is found that is not a Capture *)
(* or a Pawn promotion *)

BEGIN
 I: = I + 1
END;
IF (NOT (P ^. Move_List [P ^. MLI [I]] .

Mode_Cell
 IN [’C ’,’P’]) AND (I <= P ^ .WX))

 THEN
(* IF the move a t index location in Move−List *)
(* is not a Capture nor Promotion then *)
(* move the index of that moves location *)
(* to the Move−List index hold variable H *)

 		 BEGIN
 H: = P ^. MLI [I];
 FOR I: = (I − 1) DOWNTO 1 DO

(* and then Move all moves in the Move−List *)
(* down by one until the Move−List index = 1 *)

BEGIN
 P^. MLI [I + 1]: = P ^. MLI [I]
END;

(* then	 insert H in the top of the Move−List *)
P^. MLI [I]: = H

 	 END
 END

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence7

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

 END;
 Code 3: Pascal Code for Optimization of Quiescence Phase
of α-β Search.

The Experiment

When the chess program, HAL, enters the quiescence
phase of α-β search of the game-tree, the search is extended
one additional ply (level) of depth if the last move considered
was a capture move or a pawn promotion or king-in-check
situation. This process continues until there are no captures
or promotions produced and the search is said to have
reached quiescence. At which point the static evaluator is
called and the terminal position is scored and the returned
value is backed up the game- tree toward the root node of
the tree.

This research expands on the author’s earlier published
research involving the behaviour of α-β search on game-
trees [15], and an optimization technique first introduced in
theory by Dr. Monroe N [16] in his chess playing algorithm:
Ostridge Newborn. Dr. Newborn [16] incorporated a one-
move-generator to generate and try only the first move
of a move-list before generating a complete list of all legal
moves for the present board position. If the first move causes
an Alpha or Beta cut off, generating a complete move-list is
unnecessary. If a cut off does not occur on the first move, the
full- move-list-generator is called and a list of all legal moves
is generated for the current board position.

The Experimental Model

The experimental model that rendered the metrics
reported in this research paper was created by its principal
author Wheeler S [9]. The source code is written in Turbo
Pascal 6.0, consisting of 8,000+ lines of source code. The
program has been setup to report the metrics that support
this research. The Turbo Pascal 6.0 compiler produces only
a 32-Bit DOS executable (.exe). To execute HAL on a 64-bit
Windows Operating System, an emulator, such as DOSBOX
must be used. HAL can be executed on a Linux or UNIX
operating system with DOSEMU.

The chess program, HAL, utilizes the Iterative-
Deepening, Fail-Soft Negamax α-β search algorithm (NFAB)
with Quiescence search singular extensions, the Killer
Heuristic that maintains four Killer moves in its Killer-Table
and a larger Refutation-Table of previously discovered moves
that caused pruning to occur [17]. These methods collectively
help ensures that moves with the highest probability of
achieving maximum α-β pruning will be arranged at the
top of the move-list after reordering of the move-list occurs.
These processes are applied to each level of the game-tree

as each new ply of legal chess moves is generated [5,9]. The
chess program, HAL, has full communications capability
through natural language processing (NLP) such that it can
be configured through a series of English directives given
to the chess automaton, HAL, at start-up. The hardware on
which HAL was executed consisted of a Hewlett Packard,
Elitebook 8530w laptop computer with 8 Gigabytes of DRAM
memory and an Intel T9900 3.06 Gigahertz Core2 Duo CPU
installed. The operating system (OS) was 32- Bit Windows
Professional.

The Test Runs

To gather the metrics supporting the research reported
in this paper, the chess program, HAL, was run twice. Both
runs of the program were given the identical 24 chess moves.
HAL (the chess program) played the black pieces in both
instances. One execution of the chess program was setup
to include the author’s quiescence search optimization
enhancement. The other execution of the chess program
was setup to exclude the quiescence search optimization
enhancement.

The setup for both runs of the program, HAL, only required
setting a Boolean variable to true (quiescence optimization)
or False (without quiescence optimization) through natural
English typed commands. The two executions of the chess
program were configured by commands given to HAL’s initial
NLP (Natural Language Processing) interface dialogue. To set
the chess program up to run with quiescence optimization
the following request was entered: “HAL, attempt quiescence
optimization.” To set the chess program up to run without
quiescence optimization the following request was entered:
“HAL, do not attempt quiescence optimization.” HAL must also
be requested to report the metrics for both program setups
by entering the following request when the chess program
prompts for user input, “HAL, report game statistics.” HAL
was also requested to play with skill level 5, which generates
a 5-ply full-width game-tree before extending with a narrow-
width quiescence search.

The Metrics Produced by the Experimental
Model, HAL

The metrics produced by the two separate runs of the
chess program, HAL, are included in the Table 1 above. One
run was without quiescence optimization and the other was
run with quiescence optimization. The following table shows
the computation time and number of nodes processed for
each of the twenty-four chess moves for both runs of the
chess program, HAL.

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence8

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Human
White
Moves

HAL
Black
Moves

Time with
Opti- mization

Min:Sec.Hnd

Time Without
Opti- mization

Min:Sec.Hnd

Nodes
Expanded
with Opti-
mization

Nodes
Expanded
Without

Optimization

Branches
Pruned: Alpha-

Beta Cutoffs
without

Optimization

Branches
Pruned:

Alpha-Beta
Cutoffs with

Optimization
e2-e4 e7-e5 0.000694 0.00.50 792 860 108 107
g1-f3 g8-f6 0.000891 0.01.43 1,18,987 1,19,031 15,200 14,066
f1-b5 f8-d6 0.000706 0.01.25 98,123 1,03,685 13,665 13,809
d2-d3 a7-a6 0.00.43 0.001146 56,116 85,608 11,257 9,740
b5-c4 b7-b5 0.00.31 0.000752 39,374 59,978 7,565 6,085
c4-b3 0-0 0.00.32 0.02.14 46,380 1,49,232 25,161 6,993

0-0 b8-c6 0.000949 0.07.58 1,42,661 7,73,163 67,940 17,437
a2-a3 c6-d4 0.04.51 0.14.50 7,78,288 11,50,234 1,35,374 78,988
b3-a2 c8-b7 0.04.17 0.16.15 78,55,657 16,06,844 1,46,695 75,755
h2-h3 d4xf3 0.012616 0.43.18 3,39,779 4,85,855 3,53,683 2,45,852
d1-f3 d6-c5 0.12.41 0.016181 11,29,705 22,18,876 2,01,930 1,19,815
b1-c3 d7-d6 0.011921 0.028229 15,41,251 38,13,630 3,69,283 1,58,496
g3-h2 d8-h4 0.007755 0.49.31 9,50,458 47,18,602 4,31,837 96,570
b2-b4 c5-d4 0.51.51 0.014757 44,47,001 17,82,210 1,78,761 4,38,498
c1-b2 h5-f4 0.51.25 1.08.00 49,84,948 62,73,266 6,10,099 4,83,596
a1-e1 a6-a5 0.078727 0.167083 1,08,07,657 2,22,14,772 22,17,027 10,69,545
b4xa5 a8xa5 0.03485 0.088646 46,67,748 1,16,46,847 11,66,199 4,56,105
h2-h1 d4xc3 0.030012 0.055104 39,64,597 71,51,202 7,46,377 4,23,911
b2xc3 a5-a3 0.05.48 0.005162 4,77,992 5,93,873 74,412 61,489
a2-b3 f4xd3 0.07.25 0.10.44 6,65,984 9,97,150 1,15,033 82,843
e1-e3 d3-f4 0.006586 0.010625 8,56,418 14,38,775 1,45,665 89,376
c3-b2 a3-a5 0.09.56 0.21.25 8,91,364 19,88,336 2,02,731 93,377
b2-c3 a5-a6 0.013275 0.26.35 18,39,570 24,35,221 2,45,140 1,76,240

Table 1: Table produced from the two runs of the chess program, HAL, both with and without optimization.	

A line graph illustrating a comparison of the performance
metrics and variance produced by quiescence optimization
as compared to the performance metrics without quiescence
optimization are offered in Figures 4 & 5 below.

In both line graphs below, a solid line is with optimization
and a dashed line is without optimization.

Figure 4: Line Graph of the Elapsed Move Times with Optimization and without Optimization.

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence9

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Figure 5: Line Graph for the Computational Effort of moves with Optimization and without Optimization.

The Hypothesis

The Null Hypothesis

H0: Trying a move that will not cause a singular extension
of the game-tree before a move that will cause a singular
extension will not demonstrate a statistically significant
improvement in performance of the quiescence phase of α-β
search.

The Alternative Hypothesis

Ha: Trying a move that will not cause a singular extension
of the game-tree before a move that will cause a singular
extension will demonstrate a statistically significant
improvement in performance of the quiescence phase of α-β
search.

The Hypothesis Test

The hypothesis test was performed with a standard
T-Test as applied to the output metrics produced by the
chess program for both the quiescence alpha-beta search
with optimization and quiescence alpha-beta search without
optimization.

T-Test Results

With a confidence interval of 95% and an α (alpha)
of 0.05, for both a two-tailed and a one-tailed t-test of the
standard distribution of the data points, the P value of the
t-test was less than α rejecting the aforementioned Null
hypothesis in favour of the alternative hypothesis. Thus, this
establishes the statistical significance of quiescence alpha-
beta search with optimization over quiescence alpha-beta

search without optimization. The t-test results follow below.

import numpy as np
import pandas as pd
from bio in fokit . analys import stat

df = pd . read _ csv (“chess _ data 1.csv “)
dframe = df [[’Moves Without Optimization’ , ’Moves with
Optimization’]]

res = stat ()
res. ttest (df = dframe,
res = [’Moves Without Optimization’, ’Moves with
Optimization’] , test_ type = 3)
print (res . summary)
Code 4: Python program for T-Test Results.

The P value is less than 0.05 in both one-tail and two-
tail t-test, which means we can reject the null hypothesis in
favour of the alternative hypothesis (Table 2).

Paired T-Test
Sample Size 24

Difference Mean 1.52E+06
t 2.63178

Df 23
P-value (one-tail) 0.007454
P-value (two-tail) 0.014908

Lower 95.0 326237
Upper 95.0 2.72E+06

Table 2: Hypothesis Test Results.

https://medwinpublishers.com/OAJDA/

Open Access Journal of Data Science & Artificial Intelligence10

Wheeler SF. An Optimization Method for Quiescence in Chess-Playing Automata. J Data Sci Artificial
Int 2024, 2(1): 000138.

Copyright© Wheeler SF.

Conclusion

The findings of this research have been demonstrated
by experimentation and empiricism. The modification to
the quiescence extension of iterative-deepening alpha-beta
aspiration search demonstrates a statistically significant
performance improvement of deep game-tree search as
established by this research for game-trees of the type and
dimension as described in this research paper.

For researchers who wish to verify the results of the
research reported in this paper, and for peer review of these
findings, the author offers the Windows executable code
(.exe) and the Pascal source code (.pas), with instructions for
setting up the experiment to anyone requesting a copy. To
request a copy of the experimental model, HAL, used in this
research, send a request by email to swheeler@ai-scientist.
com. The experimental model, HAL, will be returned to the
requester, free of charge by Zipped file attachment in a reply
email.

References

1.	 Neumann J, Morgenstern O (2007) Theory of games and
economic behaviour. In Theory of games and economic
behaviour. Princeton university press.

2.	 Shannon CE (1950) Xxii. Programming a computer
for playing chess. The London, Edinburgh and Dublin
Philosophical Magazine and Journal of Science 41(314):
256-275.

3.	 Nilsson NJ (1971) Problem-solving methods in artificial
intelligence. Stanford Research institute pp: 1-73.

4.	 Knuth DE, Moore RW (1975) An analysis of alpha-beta
pruning. Artificial intelligence 6(4): 293-326.

5.	 Marsland TA (1987) Computer chess methods.

Encyclopedia of Artificial Intelligence 1: 159-171.

6.	 Samuel AL (1959) Some studies in machine learning
using the game of checkers. IBM Journal of research and
development 44(1-2): 220-229.

7.	 Russell SJ (2010) Artificial intelligence a modern
approach. Pearson Education.

8.	 Baier H (2016) A rollout-based search algorithm unifying
mcts and alpha-beta. In Computer Games pp: 57-70.

9.	 Wheeler SF (2010) The HAL (Heuristic Associative
Linear-algorithm) chess program. CPW.

10.	 Marsland TA, Campbell M (1982) Parallel search of
strongly ordered game trees. ACM Computing Surveys
14(4): 533-551.

11.	 Berliner HJ (1974) Chess as problem solving: The
development of a tactics analyser.

12.	 Marsland TA, Schaeffer J (1990) Computers, chess and
cognition. CPW.

13.	 Frey PW (1984) Chess Skill in Man and Machine. CPW.

14.	 Levy DNL (1988) Computer Chess Compendium. CPW.

15.	 Wheeler SF (1987) A performance benchmarck of the
alpha-beta procedure on randomly ordered non-uniform
depth-first game-trees generated by a chess program.
ICCA Journal 10(1): 1-43.

16.	 Newborn M (1975) Computer chess (A.C.M. monograph
series). Academic Press.

17.	 Gillogly JJ (1972) The technology chess program.
Artificial Intelligence 3: 145-163.

https://medwinpublishers.com/OAJDA/
https://archive.org/details/in.ernet.dli.2015.215284
https://archive.org/details/in.ernet.dli.2015.215284
https://archive.org/details/in.ernet.dli.2015.215284
https://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://stacks.stanford.edu/file/druid:xw061vq8842/xw061vq8842.pdf
https://stacks.stanford.edu/file/druid:xw061vq8842/xw061vq8842.pdf
https://www.sciencedirect.com/science/article/abs/pii/0004370275900193
https://www.sciencedirect.com/science/article/abs/pii/0004370275900193
https://www.academia.edu/52076702/Computer_chess
https://www.academia.edu/52076702/Computer_chess
https://ieeexplore.ieee.org/document/5392560
https://ieeexplore.ieee.org/document/5392560
https://ieeexplore.ieee.org/document/5392560
https://research.tue.nl/en/publications/a-rollout-based-search-algorithm-unifying-mcts-and-alpha-beta
https://research.tue.nl/en/publications/a-rollout-based-search-algorithm-unifying-mcts-and-alpha-beta
https://www.chessprogramming.org/HAL
https://www.chessprogramming.org/HAL
https://dl.acm.org/doi/10.1145/356893.356895
https://dl.acm.org/doi/10.1145/356893.356895
https://dl.acm.org/doi/10.1145/356893.356895
https://apps.dtic.mil/sti/tr/pdf/AD0784881.pdf
https://apps.dtic.mil/sti/tr/pdf/AD0784881.pdf
https://www.chessprogramming.org/Computers,_Chess,_and_Cognition
https://www.chessprogramming.org/Computers,_Chess,_and_Cognition
https://www.chessprogramming.org/Chess_Skill_in_Man_and_Machine
https://www.chessprogramming.org/Computer_Chess_Compendium
https://books.google.co.in/books/about/Computer_Chess.html?id=-k-VI5GSlEMC&redir_esc=y
https://books.google.co.in/books/about/Computer_Chess.html?id=-k-VI5GSlEMC&redir_esc=y
https://www.sciencedirect.com/science/article/abs/pii/0004370272900458
https://www.sciencedirect.com/science/article/abs/pii/0004370272900458

	_GoBack
	Abbreviations
	Introduction
	Minimax Search, the Essence of Applied Game Theory
	Alpha-Beta (Α-Β) Enhancement to Minimax
	The Negamax Implementation of Alpha-Beta Search
	Quiescence Extension of Alpha-Beta
	Optimization Method for Quiescence in Alpha-Beta Search
	The Experiment
	The Experimental Model
	The Test Runs
	The Metrics Produced by the Experimental Model, HAL

	The Hypothesis
	The Null Hypothesis
	The Alternative Hypothesis
	The Hypothesis Test
	T-Test Results

	Conclusion
	References

